199 research outputs found
A few-electron quadruple quantum dot in a closed loop
We report the realization of a quadruple quantum dot device in a square-like
configuration where a single electron can be transferred on a closed path free
of other electrons. By studying the stability diagrams of this system, we
demonstrate that we are able to reach the few-electron regime and to control
the electronic population of each quantum dot with gate voltages. This allows
us to control the transfer of a single electron on a closed path inside the
quadruple dot system. This work opens the route towards electron spin
manipulation using spin-orbit interaction by moving an electron on complex
paths free of electron
A linear triple quantum dot system in isolated configuration
The scaling up of electron spin qubit based nanocircuits has remained
challenging up to date and involves the development of efficient charge control
strategies. Here we report on the experimental realization of a linear triple
quantum dot in a regime isolated from the reservoir. We show how this regime
can be reached with a fixed number of electrons. Charge stability diagrams of
the one, two and three electron configurations where only electron exchange
between the dots is allowed are observed. They are modelled with established
theory based on a capacitive model of the dot systems. The advantages of the
isolated regime with respect to experimental realizations of quantum simulators
and qubits are discussed. We envision that the results presented here will make
more manipulation schemes for existing qubit implementations possible and will
ultimately allow to increase the number of tunnel coupled quantum dots which
can be simultaneously controlled
Quantum manipulation of two-electron spin states in metastable double quantum dots
We studied experimentally the dynamics of the exchange interaction between
two antiparallel electron spins in a so-called metastable double quantum dot
where coupling to the electron reservoirs can be ignored. We demonstrate that
the level of control of such a double dot is higher than in conventional double
dots. In particular, it allows to couple coherently two electron spins in an
efficient manner following a scheme initially proposed by Loss and DiVincenzo.
The present study demonstrates that metastable quantum dots are a possible
route to increase the number of coherently coupled quantum dots.Comment: 5 pages, 4 figure
Injection of a single electron from static to moving quantum dots
We study the injection mechanism of a single electron from a static quantum
dot into a moving quantum dot created in a long depleted channel with surface
acoustic waves (SAWs). We demonstrate that such a process is characterized by
an activation law with a threshold that depends on the SAW amplitude and the
dot-channel potential gradient. By increasing sufficiently the SAW modulation
amplitude, we can reach a regime where the transfer is unitary and potentially
adiabatic. This study points at the relevant regime to use moving dots in
quantum information protocols.Comment: 5 pages, 4 figure
An acto-myosin II constricting ring initiates the fission of activity-dependent bulk endosomes in neurosecretory cells
Activity-dependent bulk endocytosis allows neurons to internalize large portions of the plasma membrane in response to stimulation. However, whether this critical type of compensatory endocytosis is unique to neurons or also occurs in other excitable cells is currently unknown. Here we used fluorescent 70 kDa dextran to demonstrate that secretagogue-induced bulk endocytosis also occurs in bovine chromaffin cells. The relatively large size of the bulk endosomes found in this model allowed us to investigate how the neck of the budding endosomes constricts to allow efficient recruitment of the fission machinery. Using time-lapse imaging of Lifeact–GFP-transfected chromaffin cells in combination with fluorescent 70 kDa dextran, we detected acto-myosin II rings surrounding dextran-positive budding endosomes. Importantly, these rings were transient and contracted before disappearing, suggesting that they might be involved in restricting the size of the budding endosome neck. Based on the complete recovery of dextran fluorescence after photobleaching, we demonstrated that the actin ring-associated budding endosomes were still connected with the extracellular fluid. In contrast, no such recovery was observed following the constriction and disappearance of the actin rings, suggesting that these structures were pinched-off endosomes. Finally, we showed that the rings were initiated by a circular array of phosphatidylinositol(4,5)bisphosphate microdomains, and that their constriction was sensitive to both myosin II and dynamin inhibition. The acto-myosin II rings therefore play a key role in constricting the neck of budding bulk endosomes before dynamin-dependent fission from the plasma membrane of neurosecretory cells
Quantum Coherence at Low Temperatures in Mesoscopic Systems: Effect of Disorder
We study the disorder dependence of the phase coherence time of quasi
one-dimensional wires and two-dimensional (2D) Hall bars fabricated from a high
mobility GaAs/AlGaAs heterostructure. Using an original ion implantation
technique, we can tune the intrinsic disorder felt by the 2D electron gas and
continuously vary the system from the semi-ballistic regime to the localized
one. In the diffusive regime, the phase coherence time follows a power law as a
function of diffusion coefficient as expected in the Fermi liquid theory,
without any sign of low temperature saturation. Surprisingly, in the
semi-ballistic regime, it becomes independent of the diffusion coefficient. In
the strongly localized regime we find a diverging phase coherence time with
decreasing temperature, however, with a smaller exponent compared to the weakly
localized regime.Comment: 21 pages, 30 figure
Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites
Regulated exocytosis in neurosecretory cells relies on the timely fusion of secretory granules (SGs) with the plasma membrane. Secretagogue stimulation leads to an enlargement of the cell footprint (surface area in contact with the coverslip), an effect previously attributed to exocytic fusion of SGs with the plasma membrane. Using total internal reflection fluorescence microscopy, we reveal the formation of filopodia-like structures in bovine chromaffin and PC12 cells driving the footprint expansion, suggesting the involvement of cortical actin network remodeling in this process. Using exocytosis-incompetent PC12 cells, we demonstrate that footprint enlargement is largely independent of SG fusion, suggesting that vesicular exocytic fusion plays a relatively minor role in filopodial expansion. The footprint periphery, including filopodia, undergoes extensive F-actin remodeling, an effect abolished by the actomyosin inhibitors cytochalasin D and blebbistatin. Imaging of both Lifeact-GFP and the SG marker protein neuropeptide Y-mCherry reveals that SGs actively translocate along newly forming actin tracks before undergoing fusion. Together, these data demonstrate that neurosecretory cells regulate the number of SGs undergoing exocytosis during sustained stimulation by controlling vesicular mobilization and translocation to the plasma membrane through actin remodeling. Such remodeling facilitates the de novo formation of fusion sites
Fast end efficient single electron transfer between distant quantum dots
International audienceLateral quantum dots are a promising system for quantum information processing devices. The required basic manipulations of a single electron spin have indeed been demonstrated. However, a stringent requirement is the ability to transfer quantum information from place to place within one sample. In this work, we explore and demonstrate the possibility to transfer a single electron between two distant quantum dots in a fast and reliable manner
- …