98 research outputs found

    Production and Quality of Medicinal and Aromatic Plants: Recent Findings on Stress Effects, Elicitors, Harvesting and Market Development

    Get PDF
    There is an expanding interest worldwide in medicinal and aromatic plants (MAPs) due to their use as raw materials in the production of medicinal, aromatic and cosmetic products [...

    Mixing fresh-cut baby green and red leaf lettuce from soilless cultivation preserves phytochemical content and safety

    Get PDF
    The objective of this study was to evaluate the impact of different mixtures of two fresh-cut baby lettuce (Lactuca sativa L. var. crispa cv. Lollo Bionda [LB] and cv. Lollo Rossa [LR]) cultivars on lettuce phytochemical composition during postharvest. Lettuces were grown in a soilless culture system with continuous flotation (FL) in a greenhouse, mixed at harvest and packaged in polypropylene bags and stored at 4 °C for 9 days (d9). Mixes were made of 100, 75, 50, 25 and 0% of LB, respectively. The results showed that the phytochemicals were preserved during storage. In specific, 25LB had the highest pigment content on d1, while 50LB and 25LB had the highest inherent quality on d1.FL led to a reduced microbial contamination, thus, limiting its growth during storage. The results have revealed that high quality and microbiologically safe baby leaf vegetables (BLV), can be obtained by means of FL. The adopting a mix of lettuce cultivars could represent a positive postharvest practice to preserve the phytochemicals of BLV throughout their shelf life

    Spectroscopic-chemical fingerprint and biostimulant activity of a protein-based product in solid form

    Get PDF
    A solid biostimulant (AA309) obtained through thermobaric hydrolysis applied on trimmings and shavings of bovine hides tanned with wet-blue technology was chemically characterized, and its effects in maize (Zea mays L.) were evaluated. AA309 contained 13.60% total nitrogen (N), mainly in organic forms (13.40%), and several amino acids, especially lysine, phenylalanine, glycine, aspartate, and isoleucine. AA309 was further analyzed using Fourier Transform Infrared (FT-IR) spectroscopy, which revealed the presence of amide I and amide II bands, indicative of peptide structures. When supplied to maize plants for 15 days at two N dosages (2.1 or 4.2 mg/kg), AA309 induced positive physiological responses, likely because of its content in amino acids functioning as signaling molecules. The low dosage was the most effective in improving leaf (+24%) and root (+98%) dry weight, photosynthetic activity (+70%), and accumulation of N (+80%), proteins (+65\u201375%) and antioxidants (+60%). Spectroscopic analyses (Solid-state Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance, CP/MAS13C\u2013NMR, and High resolution-magic angle spinning nuclear magnetic resonance, HR-MAS NMR) on plant tissues revealed the increase in proteins, lignin structures and cutin in AA309-treated plants compared to untreated plants. Our results indicate that AA309 could be used as a valuable biostimulant in agriculture

    The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture

    Get PDF
    Background World demand for agricultural products is increasing. New insights are required in order to achieve sufficient and sustainable yields to meet global food request. Chemical fertilizers have been studied for almost 200 years, and it is unlikely that they could be improved. However, to produce food for a growing world population, various methods to increase the efficiency of chemical fertilizers are investigated. One approach to increasing crop productivity is the development of environment-friendly organic products named biostimulants which stimulate plant growth by enhancing the efficiency of chemical fertilizers. Most studies have tested these products in short-term experiments, but little information is available on their effect on plants at the maturity stage of growth. On this account, this paper focuses on the effects of two biostimulants, red grape skin extract (RG) and alfalfa hydrolyzate (AH), throughout the entire plant development

    Evaluation of Seaweed Extracts from Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches

    Get PDF
    Seaweed extracts can be employed as biostimulants during crop cultivation owing to their positive effects on plant performance. Therefore, in this study one extract from Laminaria (A) and five extracts from Ascophyllum nodosum (B\u2013F) were assayed on maize (Zea mays L.) plants supplied for 2 days with 0.5mL L 121 of single products to evaluate their capacity to stimulate root growth and morphology, nutrition, and sugars accumulation. Firstly, extracts were chemically characterized via Fourier transform infrared (FT-IR) and FT-Raman spectroscopies, and their content in carbon, nitrogen, phenolic acids and hormones (indole-3-acetic acid, IAA, and Isopentenyladenosine, IPA) was quantified. The auxin like- and gibberellic acid -like activities of all extracts were also determined. FT-IR and FT-Raman spectra provided complementary information depicting distinct spectral pattern for each extract. Bands assigned to alginic and uronic acids were dominant in FT-IR spectra, while those corresponding to polyaromatic rings were evident in FT-Raman spectra. In general, extracts stimulated root growth, nutrition, esterase activity, and sugar content. However, they showed high variation in chemical features, which may explain their different capacity in triggering physiological responses in maize. Among A. nodosum extracts for instance, E was the most efficient in promoting root morphology traits, likely because of its elevate content in IAA (32.43 nM), while F extract was the highest in phenol content (1,933mg L 121) and the most successful in improving plant nutrition. On the other hand, C extract was very effective in stimulating root elongation, but did not influence plant nutrition. B and D extracts induced similar positive effects on plants, although they greatly varied in chemical composition. Laminaria extract (A) differed from A. nodosum extracts, because of its low content in total phenols and the presence of both IAA- and GA-like activity. We conclude that all seaweed extracts acted as biostimulants in maize, but their chemical properties appeared crucial in predicting the physiological response preferentially elicited by individual seaweed extracts

    Evaluation of seaweed extracts from laminaria and ascophyllum nodosum spp. As biostimulants in zea mays L. using a combination of chemical, biochemical and morphological approaches

    Get PDF
    Seaweed extracts can be employed as biostimulants during crop cultivation owing to their positive effects on plant performance. Therefore, in this study one extract from Laminaria (A) and five extracts from Ascophyllum nodosum (B–F) were assayed on maize (Zea mays L.) plants supplied for 2 days with 0.5 mL L−1 of single products to evaluate their capacity to stimulate root growth and morphology, nutrition, and sugars accumulation. Firstly, extracts were chemically characterized via Fourier transform infrared (FT-IR) and FT-Raman spectroscopies, and their content in carbon, nitrogen, phenolic acids and hormones (indole-3-acetic acid, IAA, and Isopentenyladenosine, IPA) was quantified. The auxin like- and gibberellic acid -like activities of all extracts were also determined. FT-IR and FT-Raman spectra provided complementary information depicting distinct spectral pattern for each extract. Bands assigned to alginic and uronic acids were dominant in FT-IR spectra, while those corresponding to polyaromatic rings were evident in FT-Raman spectra. In general, extracts stimulated root growth, nutrition, esterase activity, and sugar content. However, they showed high variation in chemical features, which may explain their different capacity in triggering physiological responses in maize. Among A. nodosum extracts for instance, E was the most efficient in promoting root morphology traits, likely because of its elevate content in IAA (32.43 nM), while F extract was the highest in phenol content (1,933 mg L−1) and the most successful in improving plant nutrition. On the other hand, C extract was very effective in stimulating root elongation, but did not influence plant nutrition. B and D extracts induced similar positive effects on plants, although they greatly varied in chemical composition. Laminaria extract (A) differed from A. nodosum extracts, because of its low content in total phenols and the presence of both IAA- and GA-like activity. We conclude that all seaweed extracts acted as biostimulants in maize, but their chemical properties appeared crucial in predicting the physiological response preferentially elicited by individual seaweed extracts

    Humic substances stimulate maize nitrogen assimilation and amino acid metabolism at physiological and molecular level

    Get PDF
    The effects of a humic substance (HS) extracted from a volcanic soil on the nitrate assimilation pathway of Zea mays seedlings were thoroughly examined using physiological and molecular approaches. Plant growth, the amount of soluble proteins and amino acids, as well as the activities of the enzymes involved in nitrogen metabolism and Krebs cycle, were evaluated in response to different HS concentrations (0, 1 and 5 mg C L−1) supplied to maize seedlings for 48 h. To better understand the HS action, the transcript accumulation of selected genes encoding enzymes involved in nitrogen assimilation and Krebs cycle was additionally evaluated in seedlings grown for 2 weeks under nitrogen (N) sufficient condition and N deprivation. HS at low concentration (1 mg C L−1) positively influenced nitrate metabolism by increasing the content of soluble protein and amino acids synthesis. Furthermore, the activity and transcription of enzymes functioning in N assimilation and Krebs were significantly stimulated. HS treatment influenced the gene expression of Zea mays plants at transcriptional level and this regulation was closely dependent on the availability of nitrate in the growth medium
    • …
    corecore