3 research outputs found

    O que a Evolução pode nos ensinar sobre Raça e Racismo? Entrevista com o Joseph L Graves Jr.

    Get PDF
    O Dr. Joseph L. Graves Jr., renomado biólogo evolutivo e geneticista norte-americano, da North Carolina A&T State University, concedeu uma entrevista à Revista de Medicina, através dos grupos de pesquisa Race.ID (Grupo de Pesquisa em Saúde da População Negra) e BrEHS (Brazilian Evolution and Health Study Group). Na entrevista, o professor conta sobre sua trajetória, os desafios enfrentados na carreira, o que significa ser um cientista negro nos EUA, as complicadas relações entre a medicina e a ideia de raça e o que a medicina evolutiva tem a ver com tudo isso.Dr. Joseph L. Graves Jr., a renowned American evolutionary biologist and geneticist from North Carolina A&T State University, granted an interview to Revista de Medicina through the research groups Race.ID (Research Group on Black Population Health) and BrEHS (Brazilian Evolution and Health Study Group). In the interview, the professor talks about his journey, the challenges he has faced in his career, what it means to be a Black scientist in the USA, the complex relationship between medicine and the concept of race, and how evolutionary medicine is connected to all of this

    Pellucidin A promotes antinociceptive activity by peripheral mechanisms inhibiting COX-2 and NOS: In vivo and in silico study.

    No full text
    Peperomia pellucida (PP) belongs to the Peperomia genus, which has a pantropic distribution. PP is used to treat a wide range of symptoms and diseases, such as pain, inflammation, and hypertension. Intriguingly, PP extract is used by different tropical countries for its anti-inflammatory and antinociceptive effects. In fact, these outcomes have been shown in animal models, though the exact bioactive products of PP that exert such results are yet to be discovered. To determine and elucidate the mechanism of action of one of these compounds, we evaluated the antinociceptive effect of the novel dimeric ArC2 compound, Pellucidin A by using in vivo and in silico models. Animals were then subjected to chemical, biphasic and thermal models of pain. Pellucidin A induced an antinociceptive effect against chemical-induced pain in mice, demonstrated by the decrease of the number of writhes, reaching a reduction of 43% and 65% in animals treated with 1 and 5 mg/kg of Pellucidin A, respectively. In the biphasic response (central and peripheral), animals treated with Pellucidin A showed a significant reduction of the licking time exclusively during the second phase (inflammatory phase). In the hot-plate test, Pellucidin A did not have any impact on the latency time of the treated animals. Moreover, in vivo and in silico results show that Pellucidin A's mechanism of action in the inflammatory pain occurs most likely through interaction with the nitric oxide (NO) pathway. Our results demonstrate that the antinociceptive activities of Pellucidin A operate under mechanism(s) of peripheral action, involving inflammatory mediators. This work provides insightful novel evidence of the biological properties of Pellucidin A, and leads to a better understanding of its mechanism of action, pointing to potential pharmacological use

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore