6,029 research outputs found

    Ising model on the Apollonian network with node dependent interactions

    Full text link
    This work considers an Ising model on the Apollonian network, where the exchange constant Ji,j∼1/(kikj)μJ_{i,j}\sim1/(k_ik_j)^\mu between two neighboring spins (i,j)(i,j) is a function of the degree kk of both spins. Using the exact geometrical construction rule for the network, the thermodynamical and magnetic properties are evaluated by iterating a system of discrete maps that allows for very precise results in the thermodynamic limit. The results can be compared to the predictions of a general framework for spins models on scale-free networks, where the node distribution P(k)∼k−γP(k)\sim k^{-\gamma}, with node dependent interacting constants. We observe that, by increasing μ\mu, the critical behavior of the model changes, from a phase transition at T=∞T=\infty for a uniform system (μ=0)(\mu=0), to a T=0 phase transition when μ=1\mu=1: in the thermodynamic limit, the system shows no exactly critical behavior at a finite temperature. The magnetization and magnetic susceptibility are found to present non-critical scaling properties.Comment: 6 figures, 12 figure file

    Targeted Recovery as an Effective Strategy against Epidemic Spreading

    Full text link
    We propose a targeted intervention protocol where recovery is restricted to individuals that have the least number of infected neighbours. Our recovery strategy is highly efficient on any kind of network, since epidemic outbreaks are minimal when compared to the baseline scenario of spontaneous recovery. In the case of spatially embedded networks, we find that an epidemic stays strongly spatially confined with a characteristic length scale undergoing a random walk. We demonstrate numerically and analytically that this dynamics leads to an epidemic spot with a flat surface structure and a radius that grows linearly with the spreading rate.Comment: 6 pages, 5 figure

    Multifractal Properties of Aperiodic Ising Model: role of geometric fluctuations

    Full text link
    The role of the geometric fluctuations on the multifractal properties of the local magnetization of aperiodic ferromagnetic Ising models on hierachical lattices is investigated. The geometric fluctuations are introduced by generalized Fibonacci sequences. The local magnetization is evaluated via an exact recurrent procedure encompassing a real space renormalization group decimation. The symmetries of the local magnetization patterns induced by the aperiodic couplings is found to be strongly (weakly) different, with respect to the ones of the corresponding homogeneous systems, when the geometric fluctuations are relevant (irrelevant) to change the critical properties of the system. At the criticality, the measure defined by the local magnetization is found to exhibit a non-trivial F(alpha) spectra being shifted to higher values of alpha when relevant geometric fluctuations are considered. The critical exponents are found to be related with some special points of the F(alpha) function and agree with previous results obtained by the quite distinct transfer matrix approach.Comment: 10 pages, 7 figures, 3 Tables, 17 reference

    Deblocking of interacting particle assemblies: from pinning to jamming

    Full text link
    A wide variety of interacting particle assemblies driven by an external force are characterized by a transition between a blocked and a moving phase. The origin of this deblocking transition can be traced back to the presence of either external quenched disorder, or of internal constraints. The first case belongs to the realm of the depinning transition, which, for example, is relevant for flux-lines in type II superconductors and other elastic systems moving in a random medium. The second case is usually included within the so-called jamming scenario observed, for instance, in many glassy materials as well as in plastically deforming crystals. Here we review some aspects of the rich phenomenology observed in interacting particle models. In particular, we discuss front depinning, observed when particles are injected inside a random medium from the boundary, elastic and plastic depinning in particle assemblies driven by external forces, and the rheology of systems close to the jamming transition. We emphasize similarities and differences in these phenomena.Comment: 20 pages, 8 figures, submitted for a special issue of the Brazilian Journal of Physics entitled: Statistical Mechanics of Irreversible Stochastic Models - I

    A micromechanical model of collapsing quicksand

    Full text link
    The discrete element method constitutes a general class of modeling techniques to simulate the microscopic behavior (i.e. at the particle scale) of granular/soil materials. We present a contact dynamics method, accounting for the cohesive nature of fine powders and soils. A modification of the model adjusted to capture the essential physical processes underlying the dynamics of generation and collapse of loose systems is able to simulate "quicksand" behavior of a collapsing soil material, in particular of a specific type, which we call "living quicksand". We investigate the penetration behavior of an object for varying density of the material. We also investigate the dynamics of the penetration process, by measuring the relation between the driving force and the resulting velocity of the intruder, leading to a "power law" behavior with exponent 1/2, i.e. a quadratic velocity dependence of the drag force on the intruder.Comment: 5 pages, 4 figures, accepted for granular matte

    Large cities are less green

    Full text link
    We study how urban quality evolves as a result of carbon dioxide emissions as urban agglomerations grow. We employ a bottom-up approach combining two unprecedented microscopic data on population and carbon dioxide emissions in the continental US. We first aggregate settlements that are close to each other into cities using the City Clustering Algorithm (CCA) defining cities beyond the administrative boundaries. Then, we use data on CO2\rm{CO}_2 emissions at a fine geographic scale to determine the total emissions of each city. We find a superlinear scaling behavior, expressed by a power-law, between CO2\rm{CO}_2 emissions and city population with average allometric exponent β=1.46\beta = 1.46 across all cities in the US. This result suggests that the high productivity of large cities is done at the expense of a proportionally larger amount of emissions compared to small cities. Furthermore, our results are substantially different from those obtained by the standard administrative definition of cities, i.e. Metropolitan Statistical Area (MSA). Specifically, MSAs display isometric scaling emissions and we argue that this discrepancy is due to the overestimation of MSA areas. The results suggest that allometric studies based on administrative boundaries to define cities may suffer from endogeneity bias
    • …
    corecore