261 research outputs found

    Do You Know What the Buffer Capacity of Your pH Buffer Is?

    Get PDF
    This paper develops the item of buffer capacity of pH buffers and targets chemists, biologists, physiologists or anyone who may be interested to become familiar with and develop a quantitative perception of factors controlling buffer capacity of aqueous solutions (which can be complex mixtures of acids and/or bases and/or ionic salts, as are commercial pH buffers in use in a variety of applications which require control of pH, or most biological fluids, e.g., blood). The fundamental idea of representing a pH buffer or a buffered biological fluid with a matrix constitutes the leitmotif of the suggested approach through which the boring complexity of a quantitative mathematical treatment of buffer capacity has been overcome. It is shown how the matrix representing a given pH buffer or biological fluid (from which a quantitative evaluation of pH and buffer capacity can be performed) can be built in a matter of minutes (regardless of their complexity) in a MS Excel sheet by employing an Excel library of custom functions which is made available as associated material to this paper. Furthermore, from the matrix representing the pH buffer or biological fluid a plot can be derived which is used as a graphical support for enlightening the chemical significance of the matrix and to connect the buffer capacity to the Acid-Base chemistry which takes place in the represented pH buffer or biological fluid

    Phytotoxic metabolites produced by Botryosphaeriaceae involved in grapevine trunk diseases

    Get PDF
    Fungi belonging to the Botryosphaeriaceae family are well known as cosmopolitan pathogens, saprophytes and endophytes and occur on a wide range of hosts including grapevine. More recently, a new species of Lasiodiplodia was isolated from declining grapevines in Sardinia (Italy). This still undescribed species showed to produce in liquid culture several phytotoxic secondary metabolites. In this communication the chemical and biological characterization of these bioactive secondary metabolites is discussed together with their role in the pathogenesis process

    Anti-Insect Properties of Penicillium Secondary Metabolites

    Get PDF
    : In connection with their widespread occurrence in diverse environments and ecosystems, fungi in the genus Penicillium are commonly found in association with insects. In addition to some cases possibly implying a mutualistic relationship, this symbiotic interaction has mainly been investigated to verify the entomopathogenic potential in light of its possible exploitation in ecofriendly strategies for pest control. This perspective relies on the assumption that entomopathogenicity is often mediated by fungal products and that Penicillium species are renowned producers of bioactive secondary metabolites. Indeed, a remarkable number of new compounds have been identified and characterized from these fungi in past decades, the properties and possible applications of which in insect pest management are reviewed in this paper

    Lactic acid bacteria occurring during manufacture and ripening of Provolone del Monaco cheese: detection by different analytical approaches

    No full text
    Lactic acid bacteria occurring in Provolone del Monaco, an artisanal pasta filata cheese produced in Campania (Italy) from raw cows’ milk and without starter addition, were investigated by a combination of conventional and molecular approaches. The microbial community was monitored during a cheese-making process giving rise to a premium quality product. Streptococcus thermophilus and Streptococcus macedonicus prevailed during cheese manufacture and survived along nine months of ripening, together with enterococci and lactobacilli of the casei group, especially Lactobacillus rhamnosus. Phenotypic and genetic identification of 308 isolates largely reflected the results obtained by 16S rDNA sequencing analysis by polymerase chain reaction-denaturant gradient gel electrophoresis, with the significant exception of Lactobacillus fermentum and four Lactobacillus delbrueckii subspecies that were not detected by cultural methods. Each different analytical approach employed provided useful information. Their combination proved to be suitable to effectively describe the ecosystem of Provolone del Monaco cheese

    Diplofuranones A and B, two further new 4-monosubstituted 2(3<i>H</i>)-dihydrofuranones produced by <i>Diplodia corticola</i>, a fungus pathogen of cork oak

    Get PDF
    Two new 4-monosubstituted 2(3H)-dihydrofuranones, named diplofuranones A and B, were isolated from liquid cultures of Diplodia corticola, a plant pathogenic fungus causing a canker disease of cork oak (Quercus suber L.). The same fungus also produces several metabolites such as the diplopyrone, the (3S,4R)-trans- and the (3R,4R)-cis-4-hydroxymellein, the sapinofuranone B and its (S,S)-enantiomer, the well known sphaeropsidins A-C, and the diplobifuranylones A and B. The diplofuranones A and B were characterised, using spectroscopic (essentially NMR and MS techniques) methods, as the 4-[(1E,3E)-5-hydroxyhexadienyl]butan-4-olide and its corresponding 3,4-dihydro side chain derivative. The stereochemistry of the stereogenic secondary hydroxylated carbon of the side chain of diplofuranone A was determined by application of Mosher’s method and proved to be R. Diplofuranone A tested at 0.2 mg mL-1 on non-host plant did not show phytotoxic activity

    Bioactive and Structural Metabolites of Pseudomonas and Burkholderia Species Causal Agents of Cultivated Mushrooms Diseases1

    Get PDF
    Pseudomonas tolaasii, P. reactans and Burkholderia gladioli pv. agaricicola, are responsible of diseases on some species of cultivated mushrooms. The main bioactive metabolites produced by both Pseudomonas strains are the lipodepsipeptides (LDPs) tolaasin I and II and the so called White Line Inducing Principle (WLIP), respectively, LDPs which have been extensively studied for their role in the disease process and for their biological properties. In particular, their antimicrobial activity and the alteration of biological and model membranes (red blood cell and liposomes) was established. In the case of tolaasin I interaction with membranes was also related to the tridimensional structure in solution as determined by NMR combined with molecular dynamic calculation techniques. Recently, five news minor tolaasins, tolaasins A–E, were isolated from the culture filtrates of P. tolaasii and their chemical structure was determined by extensive use of NMR and MS spectroscopy. Furthermore, their antimicrobial activity was evaluated on target micro-organisms (fungi—including the cultivated mushrooms Agaricus bisporus, Lentinus edodes, and Pleurotus spp.—chromista, yeast and bacteria). The Gram positive bacteria resulted the most sensible and a significant structure-activity relationships was apparent. The isolation and structure determination of bioactive metabolites produced by B. gladioli pv. agaricicola are still in progress but preliminary results indicate their peptide nature. Furthermore, the exopolysaccharide (EPS) from the culture filtrates of B. gladioli pv. agaricicola, as well as the O-chain and lipid A, from the lipopolysaccharide (LPS) of the three bacteria, were isolated and the structures determined

    Gulypyrones A and B and phomentrioloxins B and C produced by Diaporthe gulyae, a potential mycoherbicide for saffron thistle (Carthamus lanatus)

    Get PDF
    A virulent strain of Diaporthe gulyae, isolated from stem cankers of sunflower and known to be pathogenic to saffron thistle, has been shown to produce both known and previously undescribed metabolites when grown in either static liquid culture or a bioreactor. Together with phomentrioloxin, a phytotoxic geranylcyclohexenetriol recently isolated from a strain of Phomopsis sp., two new phytotoxic trisubstituted α-pyrones, named gulypyrones A and B (1 and 2), and two new 1,O- and 2,O-dehydro derivatives of phomentrioloxin, named phomentrioloxins B and C (3 and 4), were isolated from the liquid culture filtrates of D. gulyae. These four metabolites were characterized as 6-[(2S)2-hydroxy-1-methylpropyl]-4-methoxy-5-methylpyran-2-one (1), 6-[(1E)-3-hydroxy-1-methylpropenyl]- 4-methoxy-3-methylpyran-2-one (2), 4,6-dihydroxy-5-methoxy-2-(7-methyl-3-methyleneoct-6-en-1-ynyl)cyclohex-2-enone (3), and 2,5-dihydroxy-6-methoxy-3-(7-methyl-3-methyleneoct-6-en-1-ynyl)cyclohex-3-enone (4) using spectroscopic and chemical methods. The absolute configuration of the hydroxylated secondary carbon of the 2-hydroxy-1-methylpropyl side chain at C-6 of gulypyrone A was determined as S by applying a modified Mosher’s method. Other well-known metabolites were also isolated including 3-nitropropionic, succinic, and p-hydroxy- and p-methylbenzoic acids, p-hydroxybenzaldehyde, and nectriapyrone. When assayed using a 5 mM concentration on punctured leaf disks of weedy and crop plants, apart from 3-nitropropionic acid (the main metabolite responsible for the strong phytotoxicity of the culture filtrate), phomentrioloxin B caused small, but clear, necrotic spots on a number of plant species, whereas gulypyrone A caused leaf necrosis on Helianthus annuus plantlets. All other compounds were weakly active or inactive

    Two Naphthalenone Pentakides from Liquid Cultures of «Phaeoacremonium aleophilum», a Fungus Associated with Esca of Grapevine

    Get PDF
    Several phytotoxic metabolites were extracted from culture filtrates of Phaeoacremonium aleophilum, a fungus associated with the esca of grapevine and related diseases. Two of these metabolites were identified by chemical and spectroscopic methods as scytalone (23.9 mg l-1) and isosclerone (2.4 mg l-1), two naphthalenone pentaketides already known as fungal metabolites. Assayed on detached leaves of grapevine cv. Italia, scytalone at 0.05 mg ml-1 caused light green to chlorotic, rounded to irregular, interveinal or marginal spots, and isosclerone at 0.1 mg ml-1 caused large, coalescent chlorotic and necrotic spots followed by distortion of the lamina and withering. This is the first report on the production in vitro of scytalone and isosclerone by P. aleophilum, and on the phytotoxic activity of these compounds

    Iron (II) citrate complex as a food supplement: Synthesis, characterization and complex stability

    Get PDF
    Iron deficiency represents a widespread problem for a large part of the population, especially for women, and has received increasing attention in food/supplement research. The contraindications of the iron supplements commercially available (e.g., imbalances in the levels of other essential nutrients, low bioavailability, etc.) led us to search for a possible alternative. In the present work, a rapid and easy method to synthetize a solid iron (II) citrate complex from iron filings and citric acid was developed to serve, eventually, as a food supplement or additive. In order to state its atomic composition and purity, an assortment of analytical techniques was employed (e.g., combustion analysis, thermogravimetry, X-ray diffractometry, UV/Vis spectrophotometry, etc.). Results demonstrate that the synthesized crystalline solid corresponds to the formula FeC6H6O7∙H2O and, by consequence, contains exclusively iron (II), which is an advantage with respect to existing commercial products, because iron (II) is better absorbed than iron (III) (high bioavailability of iron)
    • 

    corecore