752 research outputs found
The Puzzle of the Flyby Anomaly
Close planetary flybys are frequently employed as a technique to place
spacecraft on extreme solar system trajectories that would otherwise require
much larger booster vehicles or may not even be feasible when relying solely on
chemical propulsion. The theoretical description of the flybys, referred to as
gravity assists, is well established. However, there seems to be a lack of
understanding of the physical processes occurring during these dynamical
events. Radio-metric tracking data received from a number of spacecraft that
experienced an Earth gravity assist indicate the presence of an unexpected
energy change that happened during the flyby and cannot be explained by the
standard methods of modern astrodynamics. This puzzling behavior of several
spacecraft has become known as the flyby anomaly. We present the summary of the
recent anomalous observations and discuss possible ways to resolve this puzzle.Comment: 6 pages, 1 figure. Accepted for publication by Space Science Review
Flow equation analysis of the anisotropic Kondo model
We use the new method of infinitesimal unitary transformations to calculate
zero temperature correlation functions in the strong-coupling phase of the
anisotropic Kondo model. We find the dynamics on all energy scales including
the crossover behaviour from weak to strong coupling. The integrable structure
of the Hamiltonian is not used in our approach. Our method should also be
useful in other strong-coupling models since few other analytical methods allow
the evaluation of their correlation functions on all energy scales.Comment: 4 pages RevTeX, 2 eps figures include
Superconductivity in MgB_2 doped with Ti and C
Measurements of the superconducting upper critical field, H_{c2}, and
critical current density, J_c, have been carried out for MgB_2 doped with Ti
and/or C in order to explore the problems encountered if these dopants are used
to enhance the superconducting performance. Carbon replaces boron in the MgB_2
lattice and apparently shortens the electronic mean free path thereby raising
H_c2. Titanium forms precipitates of either TiB or TiB_2 that enhance the flux
pinning and raise J_c. Most of these precipitates are intra-granular in the
MgB_2 phase. If approximately 0.5% Ti and approximately 2% C are co-deposited
with B to form doped boron fibers and these fibers are in turn reacted in Mg
vapor to form MgB_2, the resulting superconductor has H_{c2}(T=0) ~ 25 T and
J_c ~ 10,000 A/cm**2 at 5 K and 2.2 T.Comment: 11 pages, 10 figure
Referral for specialist follow-up and its association with post-discharge mortality among patients with systolic heart failure (from the National Heart Failure Audit for England and Wales)
For patients admitted with worsening heart failure, early follow-up after discharge is recommended. Whether outcomes can be improved when follow-up is done by cardiologists is uncertain. We aimed to determine the association between cardiology follow-up and risk of death for patients with heart failure discharged from hospital. Using data from the National Heart Failure Audit (England & Wales), we investigated the effect of referral to cardiology follow-up on 30-day and one-year mortality in 68 772 patients with heart failure and a reduced left ventricular ejection fraction (HFREF) discharged from 185 hospitals between 2007 to 2013. The primary analyses used instrumental variable analysis complemented by hierarchical logistic and propensity matched models. At the hospital level, rates of referral to cardiologists varied from 6% to 96%. The median odds ratio (OR) for referral to cardiologist was 2.3 (95% confidence interval [CI] 2.1, 2.5), suggesting that, on average, the odds of a patient being referred for cardiologist follow-up after discharge differed approximately 2.3 times from one randomly selected hospital to another one. Based on the proportion of patients (per region) referred for cardiology follow-up, referral for cardiology follow-up was associated with lower 30-day (OR 0.70; CI 0.55, 0.89) and one-year mortality (OR 0.81; CI 0.68, 0.95) compared with no plans for cardiology follow-up (i.e., standard follow-up done by family doctors). Results from hierarchical logistic models and propensity matched models were consistent (30-day mortality OR 0.66; CI 0.61, 0.72 and 0.66; CI 0.58, 0.76 for hierarchical and propensity matched models, respectively). For patients with HFREF admitted to hospital with worsening symptoms, referral to cardiology services for follow-up after discharge is strongly associated with reduced mortality, both early and late
Water wave propagation and scattering over topographical bottoms
Here I present a general formulation of water wave propagation and scattering
over topographical bottoms. A simple equation is found and is compared with
existing theories. As an application, the theory is extended to the case of
water waves in a column with many cylindrical steps
The scaling limit of the critical one-dimensional random Schrodinger operator
We consider two models of one-dimensional discrete random Schrodinger
operators (H_n \psi)_l ={\psi}_{l-1}+{\psi}_{l +1}+v_l {\psi}_l,
{\psi}_0={\psi}_{n+1}=0 in the cases v_k=\sigma {\omega}_k/\sqrt{n} and
v_k=\sigma {\omega}_k/ \sqrt{k}. Here {\omega}_k are independent random
variables with mean 0 and variance 1.
We show that the eigenvectors are delocalized and the transfer matrix
evolution has a scaling limit given by a stochastic differential equation. In
both cases, eigenvalues near a fixed bulk energy E have a point process limit.
We give bounds on the eigenvalue repulsion, large gap probability, identify the
limiting intensity and provide a central limit theorem.
In the second model, the limiting processes are the same as the point
processes obtained as the bulk scaling limits of the beta-ensembles of random
matrix theory. In the first model, the eigenvalue repulsion is much stronger.Comment: 36 pages, 2 figure
Propagation inhibition and wave localization in a 2D random liquid medium
Acoustic propagation and scattering in water containing many parallel
air-filled cylinders is studied. Two situations are considered and compared:
(1) wave propagating through the array of cylinders, imitating a traditional
experimental setup, and (2) wave transmitted from a source located inside the
ensemble. We show that waves can be blocked from propagation by disorders in
the first scenario, but the inhibition does not necessarily imply wave
localization. Furthermore, the results reveal the phenomenon of wave
localization in a range of frequencies.Comment: Typos in Fiures are correcte
Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β–induced Serpine1
In tumors, extravascular fibrin forms provisional scaffolds for endothelial cell (EC) growth and motility during angiogenesis. We report that fibrin-mediated angiogenesis was inhibited and tumor growth delayed following postnatal deletion of Tgfbr2 in the endothelium of Cdh5-CreERT2 Tgfbr2fl/fl mice (Tgfbr2iECKOmice). ECs from Tgfbr2iECKO mice failed to upregulate the fibrinolysis inhibitor plasminogen activator inhibitor 1 (Serpine1, also known as PAI-1), due in part to uncoupled TGF-β–mediated suppression of miR-30c. Bypassing TGF-β signaling with vascular tropic nanoparticles that deliver miR-30c antagomiRs promoted PAI-1–dependent tumor growth and increased fibrin abundance, whereas miR-30c mimics inhibited tumor growth and promoted vascular-directed fibrinolysis in vivo. Using single-cell RNA-Seq and a NanoString miRNA array, we also found that subtypes of ECs in tumors showed spectrums of Serpine1 and miR-30c expression levels, suggesting functional diversity in ECs at the level of individual cells; indeed, fresh EC isolates from lung and mammary tumor models had differential abilities to degrade fibrin and launch new vessel sprouts, a finding that was linked to their inverse expression patterns of miR-30c and Serpine1 (i.e., miR-30chi Serpine1lo ECs were poorly angiogenic and miR-30clo Serpine1hi ECs were highly angiogenic). Thus, by balancing Serpine1 expression in ECs downstream of TGF-β, miR-30c functions as a tumor suppressor in the tumor microenvironment through its ability to promote fibrin degradation and inhibit blood vessel formation
Quality of cut and basecutter blade configuration for the mechanized harvest of green sugarcane
Quality control is used to evaluate processes and products, and is a powerful tool for reducing variability. The objective of this study was to evaluate the quality of green sugarcane (Saccharum spp.) cutting for mechanized harvest, using statistical quality control tools. Cutting height and damage to ratoon stalks caused by different blade and disc combinations of the basecutter mechanism were used as indicators of quality. Cutting height showed high variability with a controlled process for some treatments. However, these treatments were incapable of producing satisfactory results. The damage index was lower in treatments that used tilted blades, but above the target for all treatments, which caused significant damage to the ratoons. In general, the process of mechanized harvest as assessed by these indicators was found incapable of achieving targeted results and staying below specification limits, and thus requires corrective actions to improve quality
The Acinetobacter baumannii two-component system aders regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner
The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. IMPORTANCE Acinetobacter baumannii is a nosocomial pathogen and is an increasing problem in hospitals worldwide. This organism is often multidrug resistant, can persist in the environment, and forms a biofilm on environmental surfaces and wounds. Overproduction of efflux pumps can allow specific toxic compounds to be pumped out of the cell and can lead to multidrug resistance. This study demonstrates the role of the A. baumannii efflux pump AdeB, and its regulator AdeRS, in multidrug resistance, epithelial cell killing, and biofilm formation. Deletion of the genes encoding these systems led to increased susceptibility to antibiotics, decreased biofilm formation on biotic and abiotic surfaces, and decreased virulence. Our data suggest that inhibition of AdeB could prevent biofilm formation or colonization in patients by A. baumannii and provides a good target for drug discovery
- …