106,574 research outputs found
Solenoid valve design has one moving part
Solenoid valve structure has only one moving part, a ball and spring assembly. This eliminates wear caused by sliding motion contact between stationary and moving parts or between moving parts
Thrust bearing
A gas lubricated thrust bearing is described which employs relatively rigid inwardly cantilevered spokes carrying a relatively resilient annular member or annulus. This annulus acts as a beam on which are mounted bearing pads. The resilience of the beam mount causes the pads to accept the load and, with proper design, responds to a rotating thrust-transmitting collar by creating a gas film between the pads and the thrust collar. The bearing may be arranged for load equalization thereby avoiding the necessity of gimbal mounts or the like for the bearing. It may also be arranged to respond to rotation in one or both directions
High speed hybrid bearing comprising a fluid bearing and a rolling bearing convected in series
A description is given of an antifriction bearing and a process by which its fatigue life may be extended. The method involves a rotating shaft supported by a fluid bearing and a rolling element bearing coupled in series. Each bearing turns at a fraction of the rotational speed of the shaft. The fluid bearing is preferably conical, thereby providing thrust and radial load support in a single bearing structure
Magnetic suspension and pointing system
An apparatus is reported for accurate pointing of instruments on a carrier vehicle and for isolation of the instruments from the vehicle's motion disturbances. The apparatus includes two assemblies with connecting interfaces. The first assembly is attached to the carrier vehicle and consists of an azimuth gimbal and an elevation gimbal which provide coarse pointing by allowing two rotations of the instruments relative to the carrier vehicle. The second or vernier pointing assembly is made up of magnetic suspension and fine pointing actuators, roll motor segments, and an instrument mounting plase which provides appropriate magnetic circuits for the actuators and the roll motor segments. The vernier pointing assembly provides attitude fine pointing and roll positioning of the instruments as well as six degree-of-freedom isolation from carrier motion disturbances
Bearings: Technology and needs
A brief status report on bearing technology and present and near-term future problems that warrant research support is presented. For rolling element bearings a material with improved fracture toughness, life data in the low Lambda region, a comprehensive failure theory verified by life data and incorporated into dynamic analyses, and an improved corrosion resistant alloy are perceived as important needs. For hydrodynamic bearings better definition of cavitation boundaries and pressure distributions for squeeze film dampers, and geometry optimization for minimum power loss in turbulent film bearings are needed. For gas film bearings, foil bearing geometries that form more nearly optimum film shapes for maximum load capacity, and more effective surface protective coatings for high temperature operation are needed
Analysis of an all-metallic resilient-pad gas-lubricated thrust bearing
A resilient-pad gas thrust bearing that does not contain any elastomers in the bearing assembly is described and analyzed. The bearing consists of sector-shaped pads mounted asymmetrically on resilient foil beams. The effects of bearing design parameters on performance are shown. Performance of a resilient-pad bearing is compared with that of a pivoted-pad bearing
Analysis of the dynamics of a nutating body
The equations for the displacement, velocity, and acceleration of a point in a nutating body are developed. These are used to derive equations for the inertial moment developed by a nutating body of arbitrary shape. Calculations made for a previously designed nutating plate transmission indicate that that device is severely speed limited because of the very high magnitude inertial moment
Bearing, gearing, and lubrication technology
Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described
The practical impact of elastohydrodynamic lubrication
The use of elastohydrodynamics in the analysis of rolling element bearings is discussed. Relationships for minimum film thickness and tractive force were incorporated into computer codes and used for bearing performance prediction. The lambda parameter (ratio of film thickness to composite surface roughness) was shown to be important in predicting bearing life and failure mode. Results indicate that at values of lambda below 3 failure modes other than the classic subsurface initiated fatigue can occur
The specific heat jump at the superconducting transition and the quantum critical nature of the normal state of Pnictide superconductors
Recently it was discovered that the jump in the specific heat at the
superconducting transition in pnictide superconductors is proportional to the
superconducting transition temperature to the third power, with the
superconducting transition temperature varying from 2 to 25 Kelvin including
underdoped and overdoped cases. Relying on standard scaling notions for the
thermodynamics of strongly interacting quantum critical states, it is pointed
out that this behavior is consistent with a normal state that is a quantum
critical metal undergoing a pairing instability.Comment: 4 pages 1 figur
- …