69,168 research outputs found

    New Symbolic Tools for Differential Geometry, Gravitation, and Field Theory

    Get PDF
    DifferentialGeometry is a Maple software package which symbolically performs fundamental operations of calculus on manifolds, differential geometry, tensor calculus, Lie algebras, Lie groups, transformation groups, jet spaces, and the variational calculus. These capabilities, combined with dramatic recent improvements in symbolic approaches to solving algebraic and differential equations, have allowed for development of powerful new tools for solving research problems in gravitation and field theory. The purpose of this paper is to describe some of these new tools and present some advanced applications involving: Killing vector fields and isometry groups, Killing tensors and other tensorial invariants, algebraic classification of curvature, and symmetry reduction of field equations.Comment: 42 page

    Presymplectic current and the inverse problem of the calculus of variations

    Full text link
    The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a variational formulation for a subsystem of the given PDE. No constraints on the differential order or number of dependent or independent variables are assumed. The proof follows a recent observation of Bridges, Hydon and Lawson and generalizes an older result of Henneaux from ordinary differential equations (ODEs) to PDEs. Uniqueness of the variational formulation is also discussed.Comment: v2: 17 pages, no figures, BibTeX; minor corrections, close to published versio

    Properties of the Scalar Universal Equations

    Full text link
    The variational properties of the scalar so--called ``Universal'' equations are reviewed and generalised. In particular, we note that contrary to earlier claims, each member of the Euler hierarchy may have an explicit field dependence. The Euler hierarchy itself is given a new interpretation in terms of the formal complex of variational calculus, and is shown to be related to the algebra of distinguished symmetries of the first source form.Comment: 15 pages, LaTeX articl

    Effects of antiferromagnetic planes on the superconducting properties of multilayered high-Tc cuprates

    Get PDF
    We propose a mechanism for high critical temperature (T_c) in the coexistent phase of superconducting- (SC) and antiferromagnetic (AF) CuO_2 planes in multilayered cuprates. The Josephson coupling between the SC planes separated by an AF insulator (Mott insulator) is calculated perturbatively up to the fourth order in terms of the hopping integral between adjacent CuO_2 planes. It is shown that the AF exchange splitting in the AF plane suppresses the so-called pi-Josephson coupling, and the long-ranged 0-Josephson coupling leads to coexistence with a rather high value of T_c.Comment: 4 pages including 4 figure

    Electron energy spectrum of the spin-liquid state in a frustrated Hubbard model

    Get PDF
    Non-local correlation effects in the half-filled Hubbard model on an isotropic triangular lattice are studied within a spin polarized extension of the dual fermion approach. A competition between the antiferromagnetic non-collinear and the spin liquid states is strongly enhanced by an incorporation of a k-dependent self-energy beyond the local dynamical mean-field theory. The dual fermion correc- tions drastically decrease the energy of a spin liquid state while leaving the non-collinear magnetic states almost non-affected. This makes the spin liquid to become a preferable state in a certain interval of interaction strength of an order of the magnitude of a bandwidth. The spectral function of the spin-liquid Mott insulator is determined by a formation of local singlets which results in the energy gap of about twice larger than that of the 120 degrees antiferromagnetic Neel state.Comment: 6 pages, 4 figure

    New spectroscopic and polarimetric observations of the A0 supergiant HD92207

    Get PDF
    Our recent search for the presence of a magnetic field in the bright early A-type supergiant HD92207 using FORS2 in spectropolarimetric mode revealed the presence of a longitudinal magnetic field of the order of a few hundred Gauss. However, the definite confirmation of the magnetic nature of this object remained pending due to the detection of short-term spectral variability probably affecting the position of line profiles in left- and right-hand polarized spectra. We present new magnetic field measurements of HD92207 obtained on three different epochs in 2013 and 2014 using FORS2 in spectropolarimetric mode. A 3sigma detection of the mean longitudinal magnetic field using the entire spectrum, _all=104+-34G, was achieved in observations obtained in 2014 January. At this epoch, the position of the spectral lines appeared stable. Our analysis of spectral line shapes recorded in opposite circularly polarized light, i.e. in light with opposite sense of rotation, reveals that line profiles in the light polarized in a certain direction appear slightly split. The mechanism causing such a behaviour in the circularly polarized light is currently unknown. Trying to settle the issue of short-term variability, we searched for changes in the spectral line profiles on a time scale of 8-10min using HARPS polarimetric spectra and on a time scale of 3-4min using time series obtained with the CORALIE spectrograph. No significant variability was detected on these time scales during the epochs studied.Comment: 10 pages, 11 figures, 2 tables, accepted for publication in Astronomische Nachrichte

    Oscillatory decay of a two-component Bose-Einstein condensate

    Full text link
    We study the decay of a two-component Bose-Einstein condensate with negative effective interaction energy. With a decreasing atom number due to losses, the atom-atom interaction becomes less important and the system undergoes a transition from a bistable Josephson regime to the monostable Rabi regime, displaying oscillations in phase and number. We study the equations of motion and derive an analytical expression for the oscillation amplitude. A quantum trajectory simulation reveals that the classical description fails for low emission rates, as expected from analytical considerations. Observation of the proposed effect will provide evidence for negative effective interaction.Comment: 4 pages, 3 figue

    Exotic order in simple models of bosonic systems

    Get PDF
    We show that simple Bose Hubbard models with unfrustrated hopping and short range two-body repulsive interactions can support stable fractionalized phases in two and higher dimensions, and in zero magnetic field. The simplicity of the constructed models advances the possibility of a controlled experimental realization and novel applications of such unconventional states.Comment: 4 pages, 4 figure

    Performance of the WaveBurst algorithm on LIGO data

    Full text link
    In this paper we describe the performance of the WaveBurst algorithm which was designed for detection of gravitational wave bursts in interferometric data. The performance of the algorithm was evaluated on the test data set collected during the second LIGO Scientific run. We have measured the false alarm rate of the algorithm as a function of the threshold and estimated its detection efficiency for simulated burst waveforms.Comment: proceedings of GWDAW, 2003 conference, 13 pages, 6 figure
    corecore