96,609 research outputs found
Equilibrium properties of the Skylab CMG rotation law
The equilibrium properties of the control moment gyroscopes of the Skylab are discussed. A rotation law is developed to produce gimbal rates which distribute the angular momentum contributions among the control moment gyroscopes to avoid gimbal stop encounters. The implications for gimbal angle management under various angular momentum situations are described. Conditions were obtained for the existence of equilibria and corresponding stability properties
Exploratory tests of two strut fuel injectors for supersonic combustion
Results of supersonic mixing and combustion tests performed with two simple strut injector configurations, one with parallel injectors and one with perpendicular injectors, are presented and analyzed. Good agreement is obtained between static pressure measured on the duct wall downstream of the strut injectors and distributions obtained from one-dimensional calculations. Measured duct heat load agrees with results of the one-dimensional calculations for moderate amounts of reaction, but is underestimated when large separated regions occur near the injection location. For the parallel injection strut, good agreement is obtained between the shape of the injected fuel distribution inferred from gas sample measurements at the duct exit and the distribution calculated with a multiple-jet mixing theory. The overall fraction of injected fuel reacted in the multiple-jet calculation closely matches the amount of fuel reaction necessary to match static pressure with the one-dimensional calculation. Gas sample measurements with the perpendicular injection strut also give results consistent with the amount of fuel reaction in the one-dimensional calculation
Invasive bacterial infections in Gambians with sickle cell anaemia in an era of widespread Pneumococcal and Haemophilus influenzae type B vaccination
Background: There is relatively little data on the aetiology of bacterial infections in patients with sickle cell anaemia (SCA) in West Africa, and no data from countries that have implemented conjugate vaccines against both Streptococcus pneumoniae and Haemophilus influenzae type b (Hib). Methods: We conducted a retrospective analysis of SCA patients admitted to the Medical Research Council Unit, The Gambia during a five-year period when there was high coverage of Hib and Pneumococcal conjugate vaccination. We evaluated 161 admissions of 126 patients between April 2010 and April 2015. Results: Pathogenic bacteria were identified in blood cultures from 11 of the 131 admissions that had cultures taken (8.4%, 95% CI 4.5-14.1%). The most frequent isolate was Salmonella Typhimurium (6/11; 54.5%), followed by Staphylococcus aureus (2/11; 18.2%) and other enteric Gram-negative pathogens (2/11; 18.2%) and there was one case of H. influenzae non-type b bacteraemia (1/11; 9.1%). There were no episodes of bacteraemia caused by S. pneumoniae or Hib. Conclusions: The low prevalence of S. pneumoniae and Hib, and the predominance of non-typhoidal Salmonella as a cause of bacteraemia suggest the need to reconsider optimal antimicrobial prophylaxis and the empirical treatment regimens for patients with SCA
Foundations of Relational Particle Dynamics
Relational particle dynamics include the dynamics of pure shape and cases in
which absolute scale or absolute rotation are additionally meaningful. These
are interesting as regards the absolute versus relative motion debate as well
as discussion of conceptual issues connected with the problem of time in
quantum gravity. In spatial dimension 1 and 2 the relative configuration spaces
of shapes are n-spheres and complex projective spaces, from which knowledge I
construct natural mechanics on these spaces. I also show that these coincide
with Barbour's indirectly-constructed relational dynamics by performing a full
reduction on the latter. Then the identification of the configuration spaces as
n-spheres and complex projective spaces, for which spaces much mathematics is
available, significantly advances the understanding of Barbour's relational
theory in spatial dimensions 1 and 2. I also provide the parallel study of a
new theory for which positon and scale are purely relative but orientation is
absolute. The configuration space for this is an n-sphere regardless of the
spatial dimension, which renders this theory a more tractable arena for
investigation of implications of scale invariance than Barbour's theory itself.Comment: Minor typos corrected; references update
Groundstates of SU(2)-Symmetric Confined Bose Gas: Trap for a Schr\"odinger Cat
Conservation of the total isotopic spin S of a two-component Bose gas-like
Rb-has a dramatic impact on the structure of the ground state. In the
case when S is much smaller than the total number of particles N, the
condensation of each of the two components occurs into two single-particle
modes. The quantum wavefunction of such a groundstate is a Schr\"odinger Cat-a
superposition of the phase separated classical condensates, the most "probable"
state in the superposition corresponding to the classical groundstate in the
sector of given N and S. After measurement of the spatial distribution of the
densities of the two components, the Cat collapses into one of the classical
condensate states.Comment: 5 RevTex pages, no figures; replaced with revised version, where the
discussion on stability against temporal white noise and losses is adde
Experimental investigation of a swept-strut fuel-injector concept for scramjet application
Results are presented of an experiment to investigate the behavior at Mach 4 flight conditions of the swept-strut fuel-injector concept employed in the Langley integrated modular scramjet engine design. Autoignition of the hydrogen fuel was not achieved at stagnation temperatures corresponding to a flight Mach number of 4; however, once ignition was achieved, stable combustion was maintained. Pressure disturbances upstream of the injector location, which were caused by fuel injection and combustion, were generally not observed; this indicates the absence of serious adverse combustor-inlet interactions. Mixing performance and reaction performance determined from probe surveys and wall pressure data indicate that high combustion efficiency should be obtained with the combustor length provided in the scramjet engine design. No adverse interaction between the perpendicular and parallel fuel-injection modes was observed
New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split
I show how there is an ambiguity in how one treats auxiliary variables in
gauge theories including general relativity cast as 3 + 1 geometrodynamics.
Auxiliary variables may be treated pre-variationally as multiplier coordinates
or as the velocities corresponding to cyclic coordinates. The latter treatment
works through the physical meaninglessness of auxiliary variables' values
applying also to the end points (or end spatial hypersurfaces) of the
variation, so that these are free rather than fixed. [This is also known as
variation with natural boundary conditions.] Further principles of dynamics
workings such as Routhian reduction and the Dirac procedure are shown to have
parallel counterparts for this new formalism. One advantage of the new scheme
is that the corresponding actions are more manifestly relational. While the
electric potential is usually regarded as a multiplier coordinate and Arnowitt,
Deser and Misner have regarded the lapse and shift likewise, this paper's
scheme considers new {\it flux}, {\it instant} and {\it grid} variables whose
corresponding velocities are, respectively, the abovementioned previously used
variables. This paper's way of thinking about gauge theory furthermore admits
interesting generalizations, which shall be provided in a second paper.Comment: 11 page
Spontaneous superconductivity and optical properties of high-Tc cuprates
We suggest that the high temperature superconductivity in cuprate compounds
may emerge due to interaction between copper-oxygen layers mediated by in-plane
plasmons. The strength of the interaction is determined by the c-axis geometry
and by the ab-plane optical properties. Without making reference to any
particular in-plane mechanism of superconductivity, we show that the interlayer
interaction favors spontaneous appearance of the superconductivity in the
layers. At a qualitative level the model describes correctly the dependence of
the transition temperature on the interlayer distance, and on the number of
adjacent layers in multilayered homologous compounds. Moreover, the model has a
potential to explain (i) a mismatch between the optimal doping levels for
critical temperature and superconducting density and (ii) a universal scaling
relation between the dc-conductivity, the superfluid density, and the
superconducting transition temperature.Comment: 4.4 pages, 2 figures; v2 matches the published version (clarifying
remarks and references are added
Engineering flight and guest pilot evaluation report, phase 2
Prior to the flight evaluation, the two-segment profile capabilities of the DC-8-61 were evaluated and flight procedures were developed in a flight simulator at the UA Flight Training Center in Denver, Colorado. The flight evaluation reported was conducted to determine the validity of the simulation results, further develop the procedures and use of the area navigation system in the terminal area, certify the system for line operation, and obtain evaluations of the system and procedures by a number of pilots from the industry. The full area navigation capabilities of the special equipment installed were developed to provide terminal area guidance for two-segment approaches. The objectives of this evaluation were: (1) perform an engineering flight evaluation sufficient to certify the two-segment system for the six-month in-service evaluation; (2) evaluate the suitability of a modified RNAV system for flying two-segment approaches; and (3) provide evaluation of the two-segment approach by management and line pilots
- …