33,191 research outputs found
Anisotropy study of multiferroicity in the pyroxene NaFeGeO
We present a study of the anisotropy of the dielectric, magnetic and
magnetoelastic properties of the multiferroic clinopyroxene NaFeGeO.
Pyroelectric currents, dielectric constants and magnetic susceptibilities as
well as the thermal expansion and the magnetostriction were examined on large
synthetic single crystals of NaFeGeO. The spontaneous electric
polarization detected below K in an
antiferromagnetically ordered state ( K) is mainly lying
within the plane with a small component along , indicating a triclinic
symmetry of the multiferroic phase of NaFeGeO. The electric
polarization can be strongly modified by applying magnetic fields along
different directions. We derive detailed magnetic-field versus temperature
phase diagrams and identify three multiferroic low-temperature phases, which
are separated by a non-ferroelectric, antiferromagnetically ordered state from
the paramagnetic high-temperature phase.Comment: 14 pages, 8 figures. (minor modifications and corrections of the
text
An integrated source of broadband quadrature squeezed light
An integrated silicon nitride resonator is proposed as an ultra-compact
source of bright single-mode quadrature squeezed light at 850 nm. Optical
properties of the device are investigated and tailored through numerical
simulations, with particular attention paid to loss associated with interfacing
the device. An asymmetric double layer stack waveguide geometry with inverse
vertical tapers is proposed for efficient and robust fibre-chip coupling,
yielding a simulated total loss of -0.75 dB/facet. We assess the feasibility of
the device through a full quantum noise analysis and derive the output
squeezing spectrum for intra-cavity pump self-phase modulation. Subject to
standard material loss and detection efficiencies, we find that the device
holds promises for generating substantial quantum noise squeezing over a
bandwidth exceeding 1 GHz. In the low-propagation loss regime, approximately -7
dB squeezing is predicted for a pump power of only 50 mW.Comment: 23 pages, 12 figure
Using superlattice potentials to probe long-range magnetic correlations in optical lattices
In Pedersen et al. (2011) we proposed a method to utilize a temporally
dependent superlattice potential to mediate spin-selective transport, and
thereby probe long and short range magnetic correlations in optical lattices.
Specifically this can be used for detecting antiferromagnetic ordering in
repulsive fermionic optical lattice systems, but more generally it can serve as
a means of directly probing correlations among the atoms by measuring the mean
value of an observable, the number of double occupied sites. Here, we provide a
detailed investigation of the physical processes which limit the effectiveness
of this "conveyer belt method". Furthermore we propose a simple ways to improve
the procedure, resulting in an essentially perfect (error-free) probing of the
magnetic correlations. These results shows that suitably constructed
superlattices constitute a promising way of manipulating atoms of different
spin species as well as probing their interactions.Comment: 12 pages, 9 figure
Threshold detachment of negative ions by electron impact
The description of threshold fragmentation under long range repulsive forces
is presented. The dominant energy dependence near threshold is isolated by
decomposing the cross section into a product of a back ground part and a
barrier penetration probability resulting from the repulsive Coulomb
interaction. This tunneling probability contains the dominant energy variation
and it can be calculated analytically based on the same principles as Wannier's
description for threshold ionization under attractive forces. Good agreement is
found with the available experimental cross sections on detachment by electron
impact from , and .Comment: 4 pages, 4 figures (EPS), to appear in Phys.Rev.Lett, Feb. 22nd, 199
Correlation Measurement of Squeezed Light
We study the implementation of a correlation measurement technique for the
characterization of squeezed light which is nearly free of electronic noise.
With two different sources of squeezed light, we show that the sign of the
covariance coefficient, revealed from the time resolved correlation data, is
witnessing the presence of squeezing in the system. Furthermore, we estimate
the degree of squeezing using the correlation method and compare it to the
standard homodyne measurement scheme. We show that the role of electronic
detector noise is minimized using the correlation approach as opposed to
homodyning where it often becomes a crucial issue
Comparative VME Performance Tests for MEN A20 Intel-L865 and RIO-3 PPC-LynxOS platforms
This benchmark note presents test results from reading values over VME using different methods and different sizes of data registers, running on two different platforms Intel-L865 and PPC-LynxOS. We find that the PowerPC is a factor 3 faster in accessing an array of contiguous VME memory locations. Block transfer and DMA read accesses are also tested and compared with conventional single access reads
Imprint of Gravitational Lensing by Population III Stars in Gamma Ray Burst Light Curves
We propose a novel method to extract the imprint of gravitational lensing by
Pop III stars in the light curves of Gamma Ray Bursts (GRBs). Significant
portions of GRBs can originate in hypernovae of Pop III stars and be
gravitationally lensed by foreground Pop III stars or their remnants. If the
lens mass is on the order of and the lens redshift is
greater than 10, the time delay between two lensed images of a GRB is s and the image separation is as. Although it is difficult to
resolve the two lensed images spatially with current facilities, the light
curves of two images are superimposed with a delay of s. GRB light
curves usually exhibit noticeable variability, where each spike is less than
1s. If a GRB is lensed, all spikes are superimposed with the same time delay.
Hence, if the autocorrelation of light curve with changing time interval is
calculated, it should show the resonance at the time delay of lensed images.
Applying this autocorrelation method to GRB light curves which are archived as
the {\it BATSE} catalogue, we demonstrate that more than half light curves can
show the recognizable resonance, if they are lensed. Furthermore, in 1821 GRBs
we actually find one candidate of GRB lensed by a Pop III star, which may be
located at redshift 20-200. The present method is quite straightforward and
therefore provides an effective tool to search for Pop III stars at redshift
greater than 10. Using this method, we may find more candidates of GRBs lensed
by Pop III stars in the data by the {\it Swift} satellite.Comment: 13 pages, 13 figures, accepted for publication in Ap
Andreev states near short-ranged pairing potential impurities
We study Andreev states near atomic scale modulations in the pairing
potential in both - and d-wave superconductors with short coherence lengths.
For a moderate reduction of the local gap, the states exist only close to the
gap edge. If one allows for local sign changes of the order parameter, however,
resonances can occur at energies close to the Fermi level. The local density of
states (LDOS) around such pairing potential defects strongly resembles the
patterns observed by tunneling measurements around Zn impurities in
BiSrCaCuO (BSCCO). We discuss how this phase impurity model
of the Zn LDOS pattern can be distinguished from other proposals
experimentally.Comment: 4 pages, 4 figure
Analysis and study of hospital communication via social media from the patient perspective
Currently, the online interaction between citizens and hospitals is poor, as
users believe that there are shortcomings that could be improved. This study
analyzes patients’ opinions of the online communication strategies of hospitals in
Spain. Therefore, a mixed-method is proposed. Firstly, a qualitative analysis through
a focus-group was carried out, so around twenty representatives of national,
regional and local patients’ associations were brought together. Secondly, the
research is supplemented with a content assessment of the Twitter activity of the
most influential hospitals in Spain. The results reveal that the general public
appreciate hospitals’ communication potential through social media, although they
are generally unaware of how it works. The group says that, apart from the lack of
interaction, they find it hard to understand certain messages, and some publications
give a biased picture. In order to improve communication, patients and
relatives are demanding that their perspective be taken into consideration in the
messages issued to enhance the quality of life and well-being of society
Experimental determination of the degree of quantum polarisation of continuous variable states
We demonstrate excitation-manifold resolved polarisation characterisation of
continuous-variable (CV) quantum states. In contrast to traditional
characterisation of polarisation that is based on the Stokes parameters, we
experimentally determine the Stokes vector of each excitation manifold
separately. Only for states with a given photon number does the methods
coincide. For states with an indeterminate photon number, for example Gaussian
states, the employed method gives a richer and more accurate description. We
apply the method both in theory and in experiment to some common states to
demonstrate its advantages.Comment: 5 page
- …