11,831 research outputs found

    Band structure and atomic sum rules for x-ray dichroism

    Full text link
    Corrections to the atomic orbital sum rule for circular magnetic x-ray dichroism in solids are derived using orthonormal LMTOs as a single-particle basis for electron band states.Comment: 7 pages, no figure

    Orbital fluctuations in the different phases of LaVO3 and YVO3

    Get PDF
    We investigate the importance of quantum orbital fluctuations in the orthorhombic and monoclinic phases of the Mott insulators LaVO3 and YVO3. First, we construct ab-initio material-specific t2g Hubbard models. Then, by using dynamical mean-field theory, we calculate the spectral matrix as a function of temperature. Our Hubbard bands and Mott gaps are in very good agreement with spectroscopy. We show that in orthorhombic LaVO3, quantum orbital fluctuations are strong and that they are suppressed only in the monoclinic 140 K phase. In YVO3 the suppression happens already at 300 K. We show that Jahn-Teller and GdFeO3-type distortions are both crucial in determining the type of orbital and magnetic order in the low temperature phases.Comment: 4 pages, 3 figures, final version. To appear in PR

    Electronic Structure of the Chevrel-Phase Compounds Snx_{x}Mo6_{6}Se7.5_{7.5}: Photoemission Spectroscopy and Band-structure Calculations

    Full text link
    We have studied the electronic structure of two Chevrel-phase compounds, Mo6_6Se7.5_{7.5} and Sn1.2_{1.2}Mo6_6Se7.5_{7.5}, by combining photoemission spectroscopy and band-structure calculations. Core-level spectra taken with x-ray photoemission spectroscopy show systematic core-level shifts, which do not obey a simple rigid-band model. The inverse photoemission spectra imply the existence of an energy gap located ∼1\sim 1 eV above the Fermi level, which is a characteristic feature of the electronic structure of the Chevrel compounds. Quantitative comparison between the photoemission spectra and the band-structure calculations have been made. While good agreement between theory and experiment in the wide energy range was obtained as already reported in previous studies, we found that the high density of states near the Fermi level predicted theoretically due to the Van Hove singularity is considerably reduced in the experimental spectra taken with higher energy resolution than in the previous reports. Possible origins are proposed to explain this observation.Comment: 8 pages, 5 figure

    Third-generation muffin-tin orbitals

    Full text link
    By the example of sp^3-bonded semiconductors, we illustrate what 3rd-generation muffin-tin orbitals (MTOs) are. We demonstrate that they can be downfolded to smaller and smaller basis sets: sp^3d^10,sp^3, and bond orbitals. For isolated bands, it is possible to generate Wannier functions a priori. Also for bands, which overlap other bands, Wannier-like MTOs can be generated a priori. Hence, MTOs have a unique capability for providing chemical understanding.Comment: 13 pages, 8 eps figure

    Insights from ARPES for an undoped, four-layered, two-gap high-T_c superconductor

    Full text link
    An undoped cuprate with apical fluorine and inner (i) and outer (o) CuO2-layers is a 60 K superconductor whose Fermi surface (FS) has large n- and p-doped sheets with the SC gap on the n-sheet twice that on the p -sheet (Y. Chen et al.). The Fermi surface is not reproduced by the LDA, but the screening must be substantially reduced due to electronic correlations, and oxygen in the o-layers must be allowed to dimple outwards. This charges the i-layers by 0.01|e|, causes an 0.4 eV Madelung-potential difference between the i and o -layers, quenches the i-o hopping, and localizes the n-sheets onto the i-layers, thus protecting their d-wave pairs from being broken by scattering on impurities in the BaF layers. The correlation-reduced screening strengthens the coupling to z-axis phonons.Comment: 4 pages, 3 figure

    Electron-phonon interaction in the t-J model

    Full text link
    We derive a t-J model with electron-phonon coupling from the three-band model, considering modulation of both hopping and Coulomb integrals by phonons. While the modulation of the hopping integrals dominates, the modulation of the Coulomb integrals cannot be neglected. The model explains the experimentally observed anomalous softening of the half-breathing mode upon doping and a weaker softening of the breathing mode. It is shown that other phonons are not strongly influenced, and, in particular, the coupling to a buckling mode is not strong in this model.Comment: 4 pages, RevTeX, 3 eps figures; final version with minor correction

    The origin of a1g_{1g} and eg_g' orderings in Nax_xCoO2_2

    Full text link
    It has often been suggested that correlation effects suppress the small e_g' Fermi surface pockets of NaxCoO_2 that are predicted by LDA, but absent in ARPES measurements. It appears that within the dynamical mean field theory (DMFT) the ARPES can be reproduced only if the on-site energy of the eg' complex is lower than that of the a1g complex at the one-electron level, prior to the addition of local correlation effects. Current estimates regarding the order of the two orbital complexes range from -200 meV to 315 meV in therms of the energy difference. In this work, we perform density functional theory calculations of this one-electron splitting \Delta= \epsilon_a1g-\epsilon_e_g' for the full two-layer compound, Na2xCo2O4, accounting for the effects of Na ordering, interplanar interactions and octahedral distortion. We find that \epsilon a_1g-\epsilon e_g' is negative for all Na fillings and that this is primarily due to the strongly positive Coulomb field created by Na+ ions in the intercalant plane. This field disproportionately affects the a_1g orbital which protrudes farther upward from the Co plane than the e_g' orbitals. We discuss also the secondary effects of octahedral compression and multi-orbital filling on the value of \Delta as a function of Na content. Our results indicate that if the e_g' pockets are indeed suppressed that can only be due to nonlocal correlation effects beyond the standard DMFT.Comment: 4 pages, 3 figure
    • …
    corecore