457 research outputs found

    The zinc isotopic composition of siliceous marine sponges: investigating nature's sediment traps

    Get PDF
    The Zinc (Zn) content and isotopic composition of marine biogenic opal has the potential to yield information about the nutrient availability, utilisation and export of particulate organic matter from surface to deep waters. Here, we report the first measurements of the Zn isotopic composition of deep-sea marine sponge skeletal elements – spicules - collected in the Southern Ocean. Our results highlight different Zn uptake and isotopic fractionation behaviour between the two major siliceous sponge clades (hexactinellids and demosponges), which is most likely linked to sponge feeding strategy. Hexactinellid spicule Zn isotopic compositions are not fractionated with respect to seawater, most likely due to Zn transport via the open internal structure of the sponges. In contrast, demosponge spicules exhibit a wide range of Zn isotopic compositions that are related to the opal Zn concentration, most likely reflecting variable Zn isotope compositions in the organic matter particles on which they feed, and internal fractionation processes

    Assessing the Effect of Large Igneous Provinces on Global Oceanic Redox Conditions Using Non-traditional Metal Isotopes (Molybdenum, Uranium, Thallium)

    Get PDF
    This book chapter is made openly available through a Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/.Large igneous provinces (LIPs) have occurred episodically throughout Earth’s history, with the most severe events causing profound disturbances to Earth’s climate and biosphere that likely influenced the course of metazoan evolution. One environmental perturbation caused by LIP emplacement is a change in global oceanic redox conditions. The uranium (U) and molybdenum (Mo) isotope systems are relatively established tracers of global oceanic redox conditions, particularly for the extent of anoxic and euxinic seafloor, whereas the thallium (Tl) isotope system is emerging as a tracer for the extent of well‐oxygenated seafloor characterized by manganese (Mn) oxide burial. In this review, we discuss how these metal isotope systems can be used to infer changes to global oceanic redox conditions through the cascade of environmental perturbations caused by LIP emplacement, focusing on the three events (Cenomanian‐Turonian, Toarcian, and Permian‐Triassic) that have received the most attention. Existing isotope mass‐balance models for these metals indicate an expansion of oceanic anoxia and euxinia (by ~1 to 2 orders of magnitude greater than the modern ocean) accompanied LIP emplacement during these events. Future studies, ideally utilizing a multi‐isotope approach on the same samples and coupled with improvements in oceanic metal isotope mass balances and modeling, are expected to provide more precise and accurate estimates of the spatiotemporal extent of oceanic anoxia/euxinia expansion and how this relates to the magnitude, location, and style of LIP events

    SuPAR correlates with mortality and clinical severity in patients with necrotizing soft-tissue infections:results from a prospective, observational cohort study

    Get PDF
    Abstract Necrotizing soft tissue infections (NSTI) have a 90-day mortality rate of 18–22%. Tools are needed for estimating the prognosis and severity of NSTI upon admission. We evaluated soluble urokinase-type plasminogen activator receptor (suPAR) levels at admission as a prognostic marker of NSTI severity and mortality. In a prospective, observational cohort study, suPAR was measured in 200 NSTI patients. We compared admission suPAR levels in survivors and non-survivors, patients with septic shock and non-shock, amputation and non-amputation, correlations with Simplified Acute Physiology Score II (SAPS II) and the Sequential Organ Failure Assessment (SOFA) score. Admission suPAR levels were higher in septic shock vs. non-septic shock patients (9.2 vs. 5.8 ng/mL, p-value < 0.001) and non-survivors vs. survivors (11 vs. 6.1 ng/mL, p-value < 0.001) and correlated with SAPS II (r = 0.52, p < 0.001) and SOFA score (r = 0.64, p < 0.001). Elevated suPAR upon admission was associated with 90-day mortality (log-rank test p < 0.001), however not after adjustment for age, sex, and SOFA score. The AUC for suPAR and 90-day mortality was 0.77. We found that suPAR is a promising candidate for prognosis and severity in patients with NSTI

    Quantitative estimates of velocity sensitivity to surface melt variations at a large Greenland outlet glacier

    Get PDF
    This is the publisher's version, also available electronically from "http://www.ingentaconnect.com".The flow speed of Greenland outlet glaciers is governed by several factors, the relative importance of which is poorly understood. The delivery of surface-generated meltwater to the bed of alpine glaciers has been shown to influence glacier flow speed when the volume of water is sufficient to increase basal fluid pressure and hence basal lubrication. While this effect has also been demonstrated on the Greenland ice-sheet margin, little is known about the influence of surface melting on the large, marine-terminating outlet glaciers that drain the ice sheet. We use a validated model of meltwater input and GPS-derived surface velocities to quantify the sensitivity of glacier flow speed to changes in surface melt at Helheim Glacier during two summer seasons (2007–08). Our observations span ∼55 days near the middle of each melt season. We find that relative changes in glacier speed due to meltwater input are small, with variations of ∼45% in melt producing changes in velocity of ∼2–4%. These velocity variations are, however, of similar absolute magnitude to those observed at smaller glaciers and on the ice-sheet margin. We find that the glacier's sensitivity to variations in meltwater input decreases approximately exponentially with distance from the calving front. Sensitivity to melt varies with time, but generally increases as the melt season progresses. We interpret the time-varying sensitivity of glacier flow to meltwater input as resulting from changes in subglacial hydraulic routing caused by the changing volume of meltwater input

    Investigating the molybdenum and uranium redox proxies in a modern shallow anoxic carbonate rich marine sediment setting of the Malo Jezero (Mljet Lakes, Adriatic Sea)

    Get PDF
    The molybdenum (Mo) and uranium (U) isotope compositions recorded in carbonate rich sediments are emerging as promising paleo-redox proxies. However, the effects of early diagenetic effects within the sediments on these isotope systems are not well constrained. We examined the Mo and U isotopic systematics in anoxic carbonate rich sediments in a semi enclosed karstic marine lake (Malo Jezero) of the Island of Mljet, Adriatic Sea. Measurements of water column redox behavior in the lake since the 1950s, have shown a transition from anoxic-sulfidic conditions in the deeper water column to more oxic conditions and anoxia refined to the sediment and pore-waters. A 50 cm long sediment core from the deepest part of the lake, show a transition from moderate to high authigenic Mo and U accumulation with depth, consistent with the changing lake redox environment in the past. In the deep euxinic part of the core, the authigenic Mo and U are isotopically lighter and heavier, respectively, than seawater, following similar systematics as observed in other modern euxinic basins, with high, but non-quantitative, Mo and U uptake into the sediments. Based on Bahamas bank carbonate sediments, it has been suggested that the 238U/235U ratio is ~+0.25‰ higher compared to seawater from the effects of early carbonate sediment diagenesis and this carbonate vs. seawater off-set is applicable to carbonate rich sediments across the geological past. The shallower part of lake sediment core was deposited under similar redox conditions as the Bahamas sediments, and these sediments show an average 238U/235U ratio + 0.31 ± 0.01‰ (2SE) higher than seawater. Although the average 238U/235U ratios for these two carbonate rich settings are similar, caution is necessary when inferring seawater 238U/235U compositions from such sediments, as they contain U from different sources (e.g. diagenetic uptake and carbonate-bound). The Mo isotope compositions within the same Malo Jezero sediments are variable but approaches the seawater composition at low pore-water H2S concentrations. This show the potential of using the Mo isotope composition from carbonate rich sediments to infer the seawater composition, however, further work is required to establish the link between the Mo isotope composition and the chemistry of the pore water environment

    The IMF in Extreme Star-Forming Environments: Searching for Variations vs. Initial Conditions

    Full text link
    Any predictive theory of star formation must explain observed variations (or lack thereof) in the initial mass function. Recent work suggests that we might expect quantitative variations in the IMF as a function of metallicity (Larson 2005) or magnetic field strength (Shu et al. 2004). We summarize results from several on-going studies attempting to constrain the ratio of high to low mass stars, as well as stars to sub- stellar objects, in a variety of different environments, all containing high mass stars. First, we examine the ratio of stars to sub--stellar objects in the nearby Mon R2 region utilizing NICMOS/HST data. We compare our results to the IMF by Kroupa (2002)]} and to the observed ratios for IC 348 and Orion. Second, we present preliminary results for the ratio of high to low mass stars in W51, the most luminous HII region in the galaxy. Based on ground--based multi--colour images of the cluster obtained with the MMT adaptive optics system, we derive a lower limit to the ratio of high-mass to low-mass stars and compare it to the ratios for nearby clusters. Finally, we present the derived IMF for the R136 region in the LMC where the metallicity is 1/4 solar using HST/NICMOS data. We find that the IMF is consistent with that characterizing the field (Chabrier 2003), as well as nearby star--forming regions, down to 1.0 Msun outside 2 pc. Whereas the results for both Mon R2 and R136 are consistent with the nearby clusters, the ratio of high to low mass stars in W51 tentatively indicates a lack of low--mass objects.Comment: 6 pages, 3 figures, to appear in the proceedings of IAU Symposium 227: "Massive Star Birth: A Crossroads of Astrophysics

    Potassium isotope compositions of Mariana arc lavas and their sedimentary input

    Get PDF
    We apply the stable potassium isotope system (41K/39K) to well-studied Mariana arc lavas, in which inter-island geochemical variability has been interpreted to reflect near constant addition of an aqueous fluid flux, that dominantly samples the subducting mafic oceanic crust and variable amounts of sediment melt addition to the sub-arc mantle wedge. The nature of the sediment component in the Mariana arc lavas remains enigmatic, with a mixture of melts from all subducted sediment lithologies and the altered-mafic oceanic crust seeming likely, but some interpretations point towards a component from melting of the volcaniclastic sediment alone. We present K isotopic data on a set of well-characterised Mariana arc lavas and sediment samples (from Ocean Drilling Program site 801). Our data show that the majority of Mariana arc lavas are isotopically heavy (ẟ41K), by up to ∼0.2 ‰, relative to mid-ocean ridge basalt (MORB), but most of the subducting sediment samples are slightly isotopically lighter than, or indistinguishable from MORB. The volumetrically important volcaniclastic sedimentary unit however is significantly isotopically lighter than MORB, by ∼0.8 ‰, which reflects marine diagenetic processes. Thus, volcaniclastic material significantly influences the bulk sediment K isotope composition. We show that ẟ41K compositions of the Mariana arc lavas can be reproduced by the addition of an aqueous fluid with isotopically heavy K (relative to MORB) and an additional fraction of an incompatible-element-enriched isotopically light melt component. Modelling of K isotopes together with K/La and radiogenic Nd indicate that the melt component is best explained by a mix of melts from bulk sediment and altered-mafic oceanic crust. Our results show that distinctive K isotopic variations in subduction zone inputs and K isotopic fractionation during dehydration reactions makes K a useful tracer of subduction zone processes
    corecore