12 research outputs found
Completeness of reporting of clinical prediction models developed using supervised machine learning: A systematic review
ABSTRACTObjectiveWhile many studies have consistently found incomplete reporting of regression-based prediction model studies, evidence is lacking for machine learning-based prediction model studies. We aim to systematically review the adherence of Machine Learning (ML)-based prediction model studies to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement.Study design and settingWe included articles reporting on development or external validation of a multivariable prediction model (either diagnostic or prognostic) developed using supervised ML for individualized predictions across all medical fields (PROSPERO, CRD42019161764). We searched PubMed from 1 January 2018 to 31 December 2019. Data extraction was performed using the 22-item checklist for reporting of prediction model studies (www.TRIPOD-statement.org). We measured the overall adherence per article and per TRIPOD item.ResultsOur search identified 24 814 articles, of which 152 articles were included: 94 (61.8%) prognostic and 58 (38.2%) diagnostic prediction model studies. Overall, articles adhered to a median of 38.7% (IQR 31.0-46.4) of TRIPOD items. No articles fully adhered to complete reporting of the abstract and very few reported the flow of participants (3.9%, 95% CI 1.8 to 8.3), appropriate title (4.6%, 95% CI 2.2 to 9.2), blinding of predictors (4.6%, 95% CI 2.2 to 9.2), model specification (5.2%, 95% CI 2.4 to 10.8), and model’s predictive performance (5.9%, 95% CI 3.1 to 10.9). There was often complete reporting of source of data (98.0%, 95% CI 94.4 to 99.3) and interpretation of the results (94.7%, 95% CI 90.0 to 97.3).ConclusionSimilar to prediction model studies developed using conventional regression-based techniques, the completeness of reporting is poor. Essential information to decide to use the model (i.e. model specification and its performance) is rarely reported. However, some items and sub-items of TRIPOD might be less suitable for ML-based prediction model studies and thus, TRIPOD requires extensions. Overall, there is an urgent need to improve the reporting quality and usability of research to avoid research waste.What is new?Key findings: Similar to prediction model studies developed using regression techniques, machine learning (ML)-based prediction model studies adhered poorly to the TRIPOD statement, the current standard reporting guideline.What this adds to what is known? In addition to efforts to improve the completeness of reporting in ML-based prediction model studies, an extension of TRIPOD for these type of studies is needed.What is the implication, what should change now? While TRIPOD-AI is under development, we urge authors to follow the recommendations of the TRIPOD statement to improve the completeness of reporting and reduce potential research waste of ML-based prediction model studies.</jats:sec
Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques.
INTRODUCTION: Studies addressing the development and/or validation of diagnostic and prognostic prediction models are abundant in most clinical domains. Systematic reviews have shown that the methodological and reporting quality of prediction model studies is suboptimal. Due to the increasing availability of larger, routinely collected and complex medical data, and the rising application of Artificial Intelligence (AI) or machine learning (ML) techniques, the number of prediction model studies is expected to increase even further. Prediction models developed using AI or ML techniques are often labelled as a 'black box' and little is known about their methodological and reporting quality. Therefore, this comprehensive systematic review aims to evaluate the reporting quality, the methodological conduct, and the risk of bias of prediction model studies that applied ML techniques for model development and/or validation. METHODS AND ANALYSIS: A search will be performed in PubMed to identify studies developing and/or validating prediction models using any ML methodology and across all medical fields. Studies will be included if they were published between January 2018 and December 2019, predict patient-related outcomes, use any study design or data source, and available in English. Screening of search results and data extraction from included articles will be performed by two independent reviewers. The primary outcomes of this systematic review are: (1) the adherence of ML-based prediction model studies to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD), and (2) the risk of bias in such studies as assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). A narrative synthesis will be conducted for all included studies. Findings will be stratified by study type, medical field and prevalent ML methods, and will inform necessary extensions or updates of TRIPOD and PROBAST to better address prediction model studies that used AI or ML techniques. ETHICS AND DISSEMINATION: Ethical approval is not required for this study because only available published data will be analysed. Findings will be disseminated through peer-reviewed publications and scientific conferences. SYSTEMATIC REVIEW REGISTRATION: PROSPERO, CRD42019161764
Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review.
OBJECTIVE: To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties. DESIGN: Systematic review. DATA SOURCES: PubMed from 1 January 2018 to 31 December 2019. ELIGIBILITY CRITERIA: Articles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes. REVIEW METHODS: Methodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall). RESULTS: 152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively. CONCLUSION: Most studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42019161764
Methodological conduct of prognostic prediction models developed using machine learning in oncology: a systematic review.
BACKGROUND: Describe and evaluate the methodological conduct of prognostic prediction models developed using machine learning methods in oncology.
METHODS: We conducted a systematic review in MEDLINE and Embase between 01/01/2019 and 05/09/2019, for studies developing a prognostic prediction model using machine learning methods in oncology. We used the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, Prediction model Risk Of Bias ASsessment Tool (PROBAST) and CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) to assess the methodological conduct of included publications. Results were summarised by modelling type: regression-, non-regression-based and ensemble machine learning models.
RESULTS: Sixty-two publications met inclusion criteria developing 152 models across all publications. Forty-two models were regression-based, 71 were non-regression-based and 39 were ensemble models. A median of 647 individuals (IQR: 203 to 4059) and 195 events (IQR: 38 to 1269) were used for model development, and 553 individuals (IQR: 69 to 3069) and 50 events (IQR: 17.5 to 326.5) for model validation. A higher number of events per predictor was used for developing regression-based models (median: 8, IQR: 7.1 to 23.5), compared to alternative machine learning (median: 3.4, IQR: 1.1 to 19.1) and ensemble models (median: 1.7, IQR: 1.1 to 6). Sample size was rarely justified (n = 5/62; 8%). Some or all continuous predictors were categorised before modelling in 24 studies (39%). 46% (n = 24/62) of models reporting predictor selection before modelling used univariable analyses, and common method across all modelling types. Ten out of 24 models for time-to-event outcomes accounted for censoring (42%). A split sample approach was the most popular method for internal validation (n = 25/62, 40%). Calibration was reported in 11 studies. Less than half of models were reported or made available.
CONCLUSIONS: The methodological conduct of machine learning based clinical prediction models is poor. Guidance is urgently needed, with increased awareness and education of minimum prediction modelling standards. Particular focus is needed on sample size estimation, development and validation analysis methods, and ensuring the model is available for independent validation, to improve quality of machine learning based clinical prediction models
Recommended from our members
Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal
OBJECTIVE: To review and appraise the validity and usefulness of published and preprint reports of prediction models for diagnosing coronavirus disease 2019 (covid-19) in patients with suspected infection, for prognosis of patients with covid-19, and for detecting people in the general population at increased risk of covid-19 infection or being admitted to hospital with the disease. DESIGN: Living systematic review and critical appraisal by the COVID-PRECISE (Precise Risk Estimation to optimise covid-19 Care for Infected or Suspected patients in diverse sEttings) group. DATA SOURCES: PubMed and Embase through Ovid, up to 1 July 2020, supplemented with arXiv, medRxiv, and bioRxiv up to 5 May 2020. STUDY SELECTION: Studies that developed or validated a multivariable covid-19 related prediction model. DATA EXTRACTION: At least two authors independently extracted data using the CHARMS (critical appraisal and data extraction for systematic reviews of prediction modelling studies) checklist; risk of bias was assessed using PROBAST (prediction model risk of bias assessment tool). RESULTS: 37 421 titles were screened, and 169 studies describing 232 prediction models were included. The review identified seven models for identifying people at risk in the general population; 118 diagnostic models for detecting covid-19 (75 were based on medical imaging, 10 to diagnose disease severity); and 107 prognostic models for predicting mortality risk, progression to severe disease, intensive care unit admission, ventilation, intubation, or length of hospital stay. The most frequent types of predictors included in the covid-19 prediction models are vital signs, age, comorbidities, and image features. Flu-like symptoms are frequently predictive in diagnostic models, while sex, C reactive protein, and lymphocyte counts are frequent prognostic factors. Reported C index estimates from the strongest form of validation available per model ranged from 0.71 to 0.99 in prediction models for the general population, from 0.65 to more than 0.99 in diagnostic models, and from 0.54 to 0.99 in prognostic models. All models were rated at high or unclear risk of bias, mostly because of non-representative selection of control patients, exclusion of patients who had not experienced the event of interest by the end of the study, high risk of model overfitting, and unclear reporting. Many models did not include a description of the target population (n=27, 12%) or care setting (n=75, 32%), and only 11 (5%) were externally validated by a calibration plot. The Jehi diagnostic model and the 4C mortality score were identified as promising models. CONCLUSION: Prediction models for covid-19 are quickly entering the academic literature to support medical decision making at a time when they are urgently needed. This review indicates that almost all pubished prediction models are poorly reported, and at high risk of bias such that their reported predictive performance is probably optimistic. However, we have identified two (one diagnostic and one prognostic) promising models that should soon be validated in multiple cohorts, preferably through collaborative efforts and data sharing to also allow an investigation of the stability and heterogeneity in their performance across populations and settings. Details on all reviewed models are publicly available at https://www.covprecise.org/. Methodological guidance as provided in this paper should be followed because unreliable predictions could cause more harm than benefit in guiding clinical decisions. Finally, prediction model authors should adhere to the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) reporting guideline. SYSTEMATIC REVIEW REGISTRATION: Protocol https://osf.io/ehc47/, registration https://osf.io/wy245. READERS' NOTE: This article is a living systematic review that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication. This version is update 3 of the original article published on 7 April 2020 (BMJ 2020;369:m1328). Previous updates can be found as data supplements (https://www.bmj.com/content/369/bmj.m1328/related#datasupp). When citing this paper please consider adding the update number and date of access for clarity
Systematic review finds "Spin" practices and poor reporting standards in studies on machine learning-based prediction models.
OBJECTIVE: We evaluated the presence and frequency of spin practices and poor reporting standards in studies that developed and/or validated clinical prediction models using supervised machine learning techniques. STUDY DESIGN AND SETTING: We systematically searched PubMed from 01-2018 to 12-2019 to identify diagnostic and prognostic prediction model studies using supervised machine learning. No restrictions were placed on data source, outcome, or clinical specialty. RESULTS: We included 152 studies: 38% reported diagnostic models and 62% prognostic models. When reported, discrimination was described without precision estimates in 53/71 abstracts (74.6%, [95% CI 63.4 - 83.3]) and 53/81 main texts (65.4%, [95% CI 54.6 - 74.9]). Of the 21 abstracts that recommended the model to be used in daily practice, 20 (95.2% [95% CI 77.3 - 99.8]) lacked any external validation of the developed models. Likewise, 74/133 (55.6% [95% CI 47.2 - 63.8]) studies made recommendations for clinical use in their main text without any external validation. Reporting guidelines were cited in 13/152 (8.6% [95% CI 5.1 - 14.1]) studies. CONCLUSION: Spin practices and poor reporting standards are also present in studies on prediction models using machine learning techniques. A tailored framework for the identification of spin will enhance the sound reporting of prediction model studies
Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review
Objective To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.
Design Systematic review.
Data sources PubMed from 1 January 2018 to 31 December 2019.
Eligibility criteria Articles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.
Review methods Methodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).
Results 152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.
Conclusion Most studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.
Systematic review registration PROSPERO CRD42019161764
Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review
Background
While many studies have consistently found incomplete reporting of regression-based prediction model studies, evidence is lacking for machine learning-based prediction model studies. We aim to systematically review the adherence of Machine Learning (ML)-based prediction model studies to the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) Statement.
Methods
We included articles reporting on development or external validation of a multivariable prediction model (either diagnostic or prognostic) developed using supervised ML for individualized predictions across all medical fields. We searched PubMed from 1 January 2018 to 31 December 2019. Data extraction was performed using the 22-item checklist for reporting of prediction model studies (www.TRIPOD-statement.org). We measured the overall adherence per article and per TRIPOD item.
Results
Our search identified 24,814 articles, of which 152 articles were included: 94 (61.8%) prognostic and 58 (38.2%) diagnostic prediction model studies. Overall, articles adhered to a median of 38.7% (IQR 31.0–46.4%) of TRIPOD items. No article fully adhered to complete reporting of the abstract and very few reported the flow of participants (3.9%, 95% CI 1.8 to 8.3), appropriate title (4.6%, 95% CI 2.2 to 9.2), blinding of predictors (4.6%, 95% CI 2.2 to 9.2), model specification (5.2%, 95% CI 2.4 to 10.8), and model’s predictive performance (5.9%, 95% CI 3.1 to 10.9). There was often complete reporting of source of data (98.0%, 95% CI 94.4 to 99.3) and interpretation of the results (94.7%, 95% CI 90.0 to 97.3).
Conclusion
Similar to prediction model studies developed using conventional regression-based techniques, the completeness of reporting is poor. Essential information to decide to use the model (i.e. model specification and its performance) is rarely reported. However, some items and sub-items of TRIPOD might be less suitable for ML-based prediction model studies and thus, TRIPOD requires extensions. Overall, there is an urgent need to improve the reporting quality and usability of research to avoid research waste.
Systematic review registration
PROSPERO, CRD42019161764
Risk of bias of prognostic models developed using machine learning: a systematic review in oncology.
BACKGROUND: Prognostic models are used widely in the oncology domain to guide medical decision-making. Little is known about the risk of bias of prognostic models developed using machine learning and the barriers to their clinical uptake in the oncology domain. METHODS: We conducted a systematic review and searched MEDLINE and EMBASE databases for oncology-related studies developing a prognostic model using machine learning methods published between 01/01/2019 and 05/09/2019. The primary outcome was risk of bias, judged using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). We described risk of bias overall and for each domain, by development and validation analyses separately. RESULTS: We included 62 publications (48 development-only; 14 development with validation). 152 models were developed across all publications and 37 models were validated. 84% (95% CI: 77 to 89) of developed models and 51% (95% CI: 35 to 67) of validated models were at overall high risk of bias. Bias introduced in the analysis was the largest contributor to the overall risk of bias judgement for model development and validation. 123 (81%, 95% CI: 73.8 to 86.4) developed models and 19 (51%, 95% CI: 35.1 to 67.3) validated models were at high risk of bias due to their analysis, mostly due to shortcomings in the analysis including insufficient sample size and split-sample internal validation. CONCLUSIONS: The quality of machine learning based prognostic models in the oncology domain is poor and most models have a high risk of bias, contraindicating their use in clinical practice. Adherence to better standards is urgently needed, with a focus on sample size estimation and analysis methods, to improve the quality of these models
Risk of bias of prognostic models developed using machine learning: a systematic review in oncology
Background
Prognostic models are used widely in the oncology domain to guide medical decision-making. Little is known about the risk of bias of prognostic models developed using machine learning and the barriers to their clinical uptake in the oncology domain.
Methods
We conducted a systematic review and searched MEDLINE and EMBASE databases for oncology-related studies developing a prognostic model using machine learning methods published between 01/01/2019 and 05/09/2019. The primary outcome was risk of bias, judged using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). We described risk of bias overall and for each domain, by development and validation analyses separately.
Results
We included 62 publications (48 development-only; 14 development with validation). 152 models were developed across all publications and 37 models were validated. 84% (95% CI: 77 to 89) of developed models and 51% (95% CI: 35 to 67) of validated models were at overall high risk of bias. Bias introduced in the analysis was the largest contributor to the overall risk of bias judgement for model development and validation. 123 (81%, 95% CI: 73.8 to 86.4) developed models and 19 (51%, 95% CI: 35.1 to 67.3) validated models were at high risk of bias due to their analysis, mostly due to shortcomings in the analysis including insufficient sample size and split-sample internal validation.
Conclusions
The quality of machine learning based prognostic models in the oncology domain is poor and most models have a high risk of bias, contraindicating their use in clinical practice. Adherence to better standards is urgently needed, with a focus on sample size estimation and analysis methods, to improve the quality of these models