15 research outputs found

    Matrix-assisted laser desorption/ionisation collisions of bio-molecules

    Get PDF
    During this study the effect of electrostatic analysers on the time-of-flight of ions was studied theoretically, and it was shown that small energy spreads in the ion packet do not affect seriously the time-of-flight of an ion. The initial angle of an ion upon entering the electrostatic analyser does affect the time-of- flight of the ion. A C-shape configuration with two electrostatic analysers has been proposed as a solution eliminating time broadening due to spread in initial angle. An energy resolved time-of-flight mass (ER-TOF) spectrometer was constructed. Metastable fragmentation and collision-induced dissociation experiments were carried out with different molecular-mass proteins and 3- nitrobenzyl alcohol as matrix. It has been shown that in matrix-assisted laser desorption/ionisation (MALDI) there is a substantial number of ions that decay after acceleration and prior to detection. The energy resolved time-of- flight spectra show that there is a peak broadening resulting from the lack of stability of the high-mass ions during their flight through a time-of-flight instrument. The effect of the electric field above the target on the kinetic energy of the ions when 3-nitrobenzyl alcohol was used as matrix has been studied, and the energy spreads explained as being predominately energy deficits arising from the combination of high electrostatic fields, the liquid nature of the matrix and the inherent characteristics of the desorption / ionisation process. Collision experiments with different molecular-mass proteins ranging from 34% Da to 18300 Da and different collision gases over a wide range of kinetic energies showed that there is a decrease in the analyte signal with respect to the matrix signal for specific collision gases and collision energies. The ions were collected with an off-axis post acceleration detector. The decrease in the analyte signal has been explained as loss of the charge possessed by the analyte ion through charge exchange with the collision gas

    Account : chemical cross-linking. and mass spectrometry as structure determination tools

    No full text
    Chemical cross-linking is becoming a valuable tool for the high-order structure determination of proteins and protein complexes. Cross-linking methodology is able to provide low-resolution structures when at least something is known already about the proteins under investigation. The suitability of top-down and bottom-up methodologies is discussed and further potential applications of chemical cross-linking of proteins, as well as combinations with other techniques such as hydrogen/deuterium exchange and molecular modeling, are suggested

    High-energy collision induced dissociation fragmentation pathways of peptides, probed using a multiturn tandem time-of-flight mass spectrometer "MULTUM-TOF/TOF"

    No full text
    A new multiturn tandem time-of-flight (TOF) mass spectrometer "MULTUM-TOF/TOF" has been designed and constructed. It consists of a matrix-assisted laser desorption/ionization ion source, a multiturn TOF mass spectrometer, a collision cell, and a quadratic-field ion mirror. The multiturn TOF mass spectrometer can overcome the problem of precursor ion selection in TOF, due to insufficient time separation between two adjacent TOF peaks, by increasing the number of cycles. As a result, the total TOF increases with the increase in resolving power. The quadratic-field ion mirror allows temporal focusing for fragment ions with different kinetic energies. Product ion spectra from monoisotopically selected precursor ions of angiotensin I, substance P, and bradykinin have been obtained. The fragment ions observed are mainly the result of high-energy collision induced dissociation. (c) 2007 American Institute of Physics

    The OrbiTOF Mass Analyzer: Time-of-Flight Analysis via an Orbitrap Quadro-Logarithmic Field with Periodic Drift Focusing.

    No full text
    Thermo Scientificâ„¢ Orbitrapâ„¢ analyzers represent prominent class of high-resolution mass analyzer commonly used in life sciences, and for interrogation of complex samples. Injected ions, trapped within a quadro-logarithmic field, orbit a central electrode and oscillate up and down the axis. A new class of multi-reflection time-of-flight mass analyzer has been developed based on the Orbitrap field structure plus an additional series of periodic lenses wrapped around the central axis to constrain beam dispersion. The axial and angular velocity of the injected ions was balanced so that with each axial oscillation, the ions passed through the next lens in the series, to form a tightly folded 25-metre long, 3-dimensional ion path, ending with ions striking a detector surface. Performance was interrogated via experiment and simulation. 70k resolving power was observed within the relatively compact analyzer, albeit at cost to transmission. A larger design with an integrated extraction trap and greater flight energy is discussed

    A Conjoined Rectilinear Collision Cell and Pulsed Extraction Ion Trap with Auxiliary DC Electrodes.

    No full text
    Ion traps are routinely directly coupled to mass analyzers, where they serve to suitably cool and shape an ion population prior to pulsed extraction into the analyzer proper. Such devices benefit from high duty cycle and transmission but suffer slow ion processing times caused by compromise in the buffer gas pressure range that suitably dampens injected ion kinetic energy, without causing excessive scatter during extraction or within the analyzer. A rectilinear RF quadrupole ion trap has been characterized, conjoining a pressurized collision region with a pumped extraction region, and an unbroken RF interface for seamless ion transfer between them. Auxiliary electrodes mounted between the RF electrodes provide DC voltage gradients that serve to both guide ions through the device and position them at the extraction slot. The influence of the auxiliary DC upon the trapping RF field was measured, and suitable parameters defined. A mode of operation was developed that allowed parallel processing of ions in both regions, enabling a repetition rate of 200Hz when the device was coupled to a high-resolution accurate-mass analyzer

    Monitoring conformational changes in protein complexes using chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry : the effect of calcium binding on the calmodulin-melittin complex

    No full text
    Calmodulin is an EF hand calcium binding protein. Its binding affinities to various protein/peptide targets often depend on the conformational changes induced by the binding of calcium. One such target is melittin, which binds tightly to calmodulin in the presence of calcium, and inhibits its function. Chemical cross-linking combined with Fourier transform ion cyclotron resonance mass spectrometry has been employed to investigate the coordination of calmodulin and melittin in the complex at different concentrations of calcium. This methodology can be used to monitor structural changes in proteins induced by ligand binding and to study the effects these changes have on non-covalent interactions between proteins. Cross-linking results indicate that the binding place of the first melittin in the calcium-free calmodulin form is the same as in the calcium-loaded calmodulin/melittin complex
    corecore