42 research outputs found
Development of chitosan, pullulan, and alginate based drug-loaded nano-emulsions as a potential malignant melanoma delivery platform
Melanoma is the most aggressive form of skin cancer and various treatments have been investigated to treat this disease, but drug resistance remains an important factor in the failure of conventional therapeutics. Here we describe the development, optimisation and characterisation of alginate, chitosan, pullulan, and their combined nano-emulsions as drug delivery platforms for potential application for melanoma. A novel nano-emulsion delivery system was designed and assessed by determining in vitro drug release, cell viability (MTT), cellular apoptosis (ELISA) and confocal microscopy. A comparative analysis of the effect of the nano-emulsions on BRAF-mutant melanoma (A375) and keratinocyte (HaCaT) cells was conducted, with the âpullulan-chitosanâ nano-emulsion chosen as an approach for melanoma drug delivery. Increased apoptosis induction of melanoma cells was recorded as 90% after 72 h of treatment with doxorubicin-loaded optimal nano-emulsion. Similarly, in the same treatment, the viability of melanoma cells was decreased by 70%. More importantly, A375 cells treated with naĂŻve doxorubicin were 100% viable compared to cells treated with doxorubicin-loaded nano-emulsion which were only 30%viable. Achieved results are indicating the importance of the drug carrierâs polymeric combination and the impact of the drug release pattern on the efïŹciency of the treatment. This offers potential for the abrogation of drug- efïŹux-related chemo-resistance
Monitoring of lactate in interstitial fluid, saliva and sweat by electrochemical biosensor: the uncertainties of biological interpretation
Lactate electrochemical biosensors were fabricated using Pediococcus sp lactate oxidase (E.C. 1.1.3.2), an external polyurethane membrane laminate diffusion barrier and an internal ionomeric polymer barrier (sulphonated polyether ether sulphone polyether sulphone, SPEES PES). In a needle embodiment, a Pt wire working electrode was retained within stainless steel tubing serving as pseudoreference. The construct gave linearity to at least 25 mM lactate with 0.17 nA/mM lactate sensitivity. A low permeability inner membrane was also unexpectedly able to increase linearity. Responses were oxygen dependent at pO2 < 70 mmHg, irrespective of the inclusion of an external diffusion barrier membrane. Subcutaneous tissue was monitored in Sprague Dawley rats, and saliva and sweat during exercise in human subjects. The tissue sensors registered no response to intravenous Na lactate, indicating a blood-tissue lactate barrier. Salivary lactate allowed tracking of blood lactate during exercise, but lactate levels were substantially lower than those in blood (0â3.5 mM vs. 1.6â12.1 mM), with variable degrees of lactate partitioning from blood, evident both between subjects and at different exercise time points. Sweat lactate during exercise measured up to 23 mM but showed highly inconsistent change as exercise progressed. We conclude that neither tissue interstitial fluid nor sweat are usable as surrogates for blood lactate, and that major reappraisal of lactate sensor use is indicated for any extravascular monitoring strategy for lactate
Ion-selective electrodes in environmental analysis
An overview is given dealing with the application of ion-selective electrodes (ISEs) in environmental analysis. ISEs are placed into the context of the trend of development of sensors for extensive and frequent monitoring. Discussed are the issues such as sensing platforms and their mass-production, improvement of precision, diagnostic of sensor functionality, and development of reference electrodes. Several examples of real-life application of ISEs in environmental analysis are given. The main emphasis of this article is directed towards summarizing recent results of the authors during the past several years
High temporal resolution delayed analysis of clinical microdialysate streams
We thank the Wellcome Trust DOH (HICF-0510-080), the
EPSRC (EP/H009744/1) (cycling experiments), and the Imperial
Confidence in Concept scheme, Ovarian Cancer Action UK
(ovarian tissue measurements), the National Science
Foundation (CHE-1608757), and the NIH (R01 MH104386) for
fundin
Inhibited enzymatic reaction of crosslinked lactate oxidase through a pH-dependent mechanism
Lactate oxidase (LOx), recognized to selectively catalyze the lactate oxidation in complex matrices, has been highlighted as preferable biorecognition element for the development of lactate biosensors. In a previous work, we have demonstrated that LOx crosslinking on a modified screen-printed electrode results in a dual range lactate biosensor, with one of the analysis linear range (4 to 50âŻmM) compatible with lactate sweat levels. It was advanced that such behavior results from an atypical substrate inhibition process. To understand such inhibition phenomena, this work relies in the study of LOx structure when submitted to increased substrate concentrations. The results found by fluorescence spectroscopy and dynamic light scattering of LOx solutions, evidenced conformational changes of the enzyme, occurring in presence of inhibitory substrate concentrations. Therefore, the inhibition behavior found at the biosensor, is an outcome of LOx structural alterations as result of a pH-dependent mechanism promoted at high substrate concentrations.Spanish Ministry of Science and Innovation (MICINN), Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (FEDER) (TEC20013-40561-P and MUSSEL RTC-2015-4077-2). Hugo Cunha-Silva would like to acknowledge funding from the Spanish Ministry of Economy (BES-2014-068214
Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes
A novel potentiometric solid-state reference electrode containing single-walled carbon nanotubes as the transducer layer between a polyacrylate membrane and the conductor is reported here. Single-walled carbon nanotubes act as an efficient transducer of the constant potentiometric signal originating from the reference membrane containing the Ag/AgCl/Clâ ions system, and they are needed to obtain a stable reference potentiometric signal. Furthermore, we have taken advantage of the light insensitivity of single-walled carbon nanotubes to improve the analytical performance characteristics of previously reported solid-state reference electrodes. Four different polyacrylate polymers have been selected in order to identify the most efficient reservoir for the Ag/AgCl system. Finally, two different arrangements have been assessed: (1) a solid-state reference electrode using photo-polymerised n-butyl acrylate polymer and (2) a thermo-polymerised methyl methacrylate:n-butyl acrylate (1:10) polymer. The sensitivity to various salts, pH and light, as well as time of response and stability, has been tested: the best results were obtained using single-walled carbon nanotubes and photo-polymerised n-butyl acrylate polymer. Water transport plays an important role in the potentiometric performance of acrylate membranes, so a new screening test method has been developed to qualitatively assess the difference in water percolation between the polyacrylic membranes studied. The results presented here open the way for the true miniaturisation of potentiometric systems using the excellent properties of single-walled carbon nanotubes
Paving the way of systems biology and precision medicine in allergic diseases : the MeDALL success story Mechanisms of the Development of ALLergy; EUFP7-CP-IP; Project No: 261357; 2010-2015
MeDALL (Mechanisms of the Development of ALLergy; EU FP7-CP-IP; Project No: 261357; 2010-2015) has proposed an innovative approach to develop early indicators for the prediction, diagnosis, prevention and targets for therapy. MeDALL has linked epidemiological, clinical and basic research using a stepwise, large-scale and integrative approach: MeDALL data of precisely phenotyped children followed in 14 birth cohorts spread across Europe were combined with systems biology (omics, IgE measurement using microarrays) and environmental data. Multimorbidity in the same child is more common than expected by chance alone, suggesting that these diseases share causal mechanisms irrespective of IgE sensitization. IgE sensitization should be considered differently in monosensitized and polysensitized individuals. Allergic multimorbidities and IgE polysensitization are often associated with the persistence or severity of allergic diseases. Environmental exposures are relevant for the development of allergy-related diseases. To complement the population-based studies in children, MeDALL included mechanistic experimental animal studies and in vitro studies in humans. The integration of multimorbidities and polysensitization has resulted in a new classification framework of allergic diseases that could help to improve the understanding of genetic and epigenetic mechanisms of allergy as well as to better manage allergic diseases. Ethics and gender were considered. MeDALL has deployed translational activities within the EU agenda.Peer reviewe
Position paper: The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction
Environmental enteric dysfunction (EED) is a disease of the small intestine affecting children and adults in low and middle income countries. Arising as a consequence of repeated infections, gut inflammation results in impaired intestinal absorptive and barrier function, leading to poor nutrient uptake and ultimately to stunting and other developmental limitations. Progress towards new biomarkers and interventions for EED is hampered by the practical and ethical difficulties of cross-validation with the gold standard of biopsy and histology. Optical biopsy techniques â which can provide minimally invasive or noninvasive alternatives to biopsy â could offer other routes to validation and could potentially be used as point-of-care tests among the general population. This Consensus Statement identifies and reviews the most promising candidate optical biopsy technologies for applications in EED, critically assesses them against criteria identified for successful deployment in developing world settings, and proposes further lines of enquiry. Importantly, many of the techniques discussed could also be adapted to monitor the impaired intestinal barrier in other settings such as IBD, autoimmune enteropathies, coeliac disease, graft-versus-host disease, small intestinal transplantation or critical care
A bioinspired 3D micro-structure for graphene-based bacteria sensing
Nature is a great source of inspiration for the development of solutions for biomedical problems. We present a novel biosensor design utilizing two-photon polymerisation and graphene to fabricate an enhanced biosensing platform for the detection of motile bacteria. A cage comprising venous valve-inspired directional micro-structure is fabricated around graphene-based sensing electronics. The asymmetric 3D micro-structure promotes motile cells to swim from outside the cage towards the inner-most chamber, resulting in concentrated bacteria surrounding the central sensing region, thus enhancing the sensing signal. The concentrating effect is proved across a range of cell cultures - from 101 CFU/ml to 109 CFU/ml. Fluorescence analysis shows a 3.38â3.5 times enhanced signal. pH sensor presents a 2.14â3.08 times enhancement via the detection of cellar metabolite. Electrical measurements demonstrate an 8.8â26.7 times enhanced current. The proposed platform provides a new way of leveraging bio-inspired 3D printing and 2D materials for the development of sensing devices for biomedical applications
Towards hybrid microrobots using pH- and photo-responsive hydrogels for cancer targeting and drug delivery
This work is towards targeted drug delivery using microrobots functionalized to navigate towards naturally occurring pH gradients caused by cancer cells, and to release a payload in response to a light stimulus. Stimuli-responsive microrobots for the localization of specific cell types and targeted drug delivery could provide a new and promising therapy to prevent and treat the spread of cancer. In this work, we present two novel biocompatible photoresists for the fabrication of hybrid microrobots using two-photon polymerization (TPP) for medical applications. One biomarker for cancerous cells is that they exhibit lower pH compared to surrounding healthy tissue. In this work, a pH-responsive resist was developed and demonstrated to automatically seek a low-pH solid in a microfluidic channel, simulating metastatic cells within a vessel. The second resist, a hydrogel-based photoresist, was created to contract in response to light. The two resists were combined together in a two-step printing process to create a microswimmer with potential for tumor localization and drug release capabilities in the human circulatory system