8 research outputs found

    Enterohemorrhagic Escherichia coli infection inhibits colonic thiamin pyrophosphate uptake via transcriptional mechanism.

    Get PDF
    Colonocytes possess a specific carrier-mediated uptake process for the microbiota-generated thiamin (vitamin B1) pyrophosphate (TPP) that involves the TPP transporter (TPPT; product of the SLC44A4 gene). Little is known about the effect of exogenous factors (including enteric pathogens) on the colonic TPP uptake process. Our aim in this study was to investigate the effect of Enterohemorrhagic Escherichia coli (EHEC) infection on colonic uptake of TPP. We used human-derived colonic epithelial NCM460 cells and mice in our investigation. The results showed that infecting NCM460 cells with live EHEC (but not with heat-killed EHEC, EHEC culture supernatant, or with non-pathogenic E. Coli) to lead to a significant inhibition in carrier-mediated TPP uptake, as well as in level of expression of the TPPT protein and mRNA. Similarly, infecting mice with EHEC led to a significant inhibition in colonic TPP uptake and in level of expression of TPPT protein and mRNA. The inhibitory effect of EHEC on TPP uptake by NCM460 was found to be associated with reduction in the rate of transcription of the SLC44A4 gene as indicated by the significant reduction in the activity of the SLC44A4 promoter transfected into EHEC infected cells. The latter was also associated with a marked reduction in the level of expression of the transcription factors CREB-1 and ELF3, which are known to drive the activity of the SLC44A4 promoter. Finally, blocking the ERK1/2 and NF-kB signaling pathways in NCM460 cells significantly reversed the level of EHEC inhibition in TPP uptake and TPPT expression. Collectively, these findings show, for the first time, that EHEC infection significantly inhibit colonic uptake of TPP, and that this effect appears to be exerted at the level of SLC44A4 transcription and involves the ERK1/2 and NF-kB signaling pathways

    Functional reorganization of monoamine transport systems during villous trophoblast differentiation: evidence of distinct differences between primary human trophoblasts and BeWo cells.

    Get PDF
    BACKGROUND Three primary monoamines-serotonin, norepinephrine, and dopamine-play major roles in the placenta-fetal brain axis. Analogously to the brain, the placenta has transport mechanisms that actively take up these monoamines into trophoblast cells. These transporters are known to play important roles in the differentiated syncytiotrophoblast layer, but their status and activities in the undifferentiated, progenitor cytotrophoblast cells are not well understood. Thus, we have explored the cellular handling and regulation of monoamine transporters during the phenotypic transitioning of cytotrophoblasts along the villous pathway. METHODS Experiments were conducted with two cellular models of syncytium development: primary trophoblast cells isolated from the human term placenta (PHT), and the choriocarcinoma-derived BeWo cell line. The gene and protein expression of membrane transporters for serotonin (SERT), norepinephrine (NET), dopamine (DAT), and organic cation transporter 3 (OCT3) was determined by quantitative PCR and Western blot analysis, respectively. Subsequently, the effect of trophoblast differentiation on transporter activity was analyzed by monoamine uptake into cells. RESULTS We present multiple lines of evidence of changes in the transcriptional and functional regulation of monoamine transporters associated with trophoblast differentiation. These include enhancement of SERT and DAT gene and protein expression in BeWo cells. On the other hand, in PHT cells we report negative modulation of SERT, NET, and OCT3 protein expression. We show that OCT3 is the dominant monoamine transporter in PHT cells, and its main functional impact is on serotonin uptake, while passive transport strongly contributes to norepinephrine and dopamine uptake. Further, we show that a wide range of selective serotonin reuptake inhibitors affect serotonin cellular accumulation, at pharmacologically relevant drug concentrations, via their action on both OCT3 and SERT. Finally, we demonstrate that BeWo cells do not well reflect the molecular mechanisms and properties of healthy human trophoblast cells. CONCLUSIONS Collectively, our findings provide insights into the regulation of monoamine transport during trophoblast differentiation and present important considerations regarding appropriate in vitro models for studying monoamine regulation in the placenta

    Enterohemorrhagic Escherichia coli infection inhibits colonic thiamin pyrophosphate uptake via transcriptional mechanism.

    No full text
    Colonocytes possess a specific carrier-mediated uptake process for the microbiota-generated thiamin (vitamin B1) pyrophosphate (TPP) that involves the TPP transporter (TPPT; product of the SLC44A4 gene). Little is known about the effect of exogenous factors (including enteric pathogens) on the colonic TPP uptake process. Our aim in this study was to investigate the effect of Enterohemorrhagic Escherichia coli (EHEC) infection on colonic uptake of TPP. We used human-derived colonic epithelial NCM460 cells and mice in our investigation. The results showed that infecting NCM460 cells with live EHEC (but not with heat-killed EHEC, EHEC culture supernatant, or with non-pathogenic E. Coli) to lead to a significant inhibition in carrier-mediated TPP uptake, as well as in level of expression of the TPPT protein and mRNA. Similarly, infecting mice with EHEC led to a significant inhibition in colonic TPP uptake and in level of expression of TPPT protein and mRNA. The inhibitory effect of EHEC on TPP uptake by NCM460 was found to be associated with reduction in the rate of transcription of the SLC44A4 gene as indicated by the significant reduction in the activity of the SLC44A4 promoter transfected into EHEC infected cells. The latter was also associated with a marked reduction in the level of expression of the transcription factors CREB-1 and ELF3, which are known to drive the activity of the SLC44A4 promoter. Finally, blocking the ERK1/2 and NF-kB signaling pathways in NCM460 cells significantly reversed the level of EHEC inhibition in TPP uptake and TPPT expression. Collectively, these findings show, for the first time, that EHEC infection significantly inhibit colonic uptake of TPP, and that this effect appears to be exerted at the level of SLC44A4 transcription and involves the ERK1/2 and NF-kB signaling pathways
    corecore