24 research outputs found
A futile cycle, formed between two ATP-dependant γ-glutamyl cycle enzymes, γ-glutamyl cysteine synthetase and 5-oxoprolinase: the cause of cellular ATP depletion in nephrotic cystinosis?
Cystinosis, an inherited disease caused by a defect in the lysosomal cystine transporter (CTNS), is characterized by renal proximal tubular dysfunction. Adenosine triphosphate (ATP) depletion appears to be a key event in the pathophysiology of the disease, even though the manner in which ATP depletion occurs is still a puzzle. We present a model that explains how a futile cycle that is generated between two ATP-utilizing enzymes of the γ-glutamyl cycle leads to ATP depletion. The enzyme γ-glutamyl cysteine synthetase (γ-GCS), in the absence of cysteine, forms 5-oxoproline (instead of the normal substrate, γ-glutamyl cysteine) and the 5-oxoproline is converted into glutamate by the ATP-dependant enzyme, 5-oxoprolinase. Thus, in cysteine-limiting conditions, glutamate is cycled back into glutamate via 5-oxoproline at the cost of two ATP molecules without production of glutathione and is the cause of the decreased levels of glutathione synthesis, as well as the ATP depletion observed in these cells. The model is also compatible with the differences seen in the human patients and the mouse model of cystinosis, where renal failure is not observed
Utilization of glutathione as an exogenous sulfur source is independent of γ-glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative gluathione degradation pathway
γ-Glutamyl transpeptidase (γ-GT) is the only enzyme known to be responsible for glutathione degradation in living cells. In the present study we provide evidence that the utilization of glutathione can occur in the absence of γ-GT. When disruptions in the CIS2 gene encoding γ-GT were created in met15δ strains, which require organic sulfur sources for growth, the cells were able to grow well with glutathione as the sole sulfur source suggesting that a γ-GT-independent pathway for glutathione degradation exists in yeast cells. The CIS2 gene was strongly repressed by ammonium and derepressed in glutamate medium, and was found to be regulated by the nitrogen regulatory circuit. The utilization of glutathione as a sulfur source was, however, independent of the nitrogen source in the medium, further underlining that the two degradatory pathways were distinct
OXP1/YKL215c encodes an ATP-dependent 5-oxoprolinase in Saccharomyces cerevisiae: functional characterization, domain structure and identification of actin-like ATP-binding motifs in eukaryotic 5-oxoprolinases
OXP1/YKL215c, an uncharacterized ORF of Saccharomyces cerevisiae, encodes a functional ATP-dependent 5-oxoprolinase of 1286 amino acids. The yeast 5-oxoprolinase activity was demonstrated in vivo by utilization of 5-oxoproline as a source of glutamate and OTC, a 5-oxoproline sulfur analogue, as a source of sulfur in cells overexpressing OXP1. In vitro characterization by expression and purification of the recombinant protein in S. cerevisiae revealed that the enzyme exists and functions as a dimer, and has a K<SUB>m</SUB> of 159 μM and a V<SUB>max</SUB> of 3.5 nmol h<SUP>-1</SUP>μg<SUP>-1</SUP> protein. The enzyme was found to be functionally separable in two distinct domains. An 'actin-like ATPase motif' could be identified in 5-oxprolinases, and mutation of key residues within this motif led to complete loss in ATPase and 5-oxoprolinase activity of the enzyme. The results are discussed in the light of the previously postulated truncated γ-glutamyl cycle of yeasts
Investigations into the polymorphisms at the ECM38 locus of two widely used Saccharomyces cerevisiae S288C strains, YPH499 and BY4742
The ECM38 gene encodes the γ-glutamyl transpeptidase enzyme, an enzyme involved in glutathione turnover. The enzyme was found to be present in the S288C strain, BY4742, but absent in another widely used strain congenic to S288C, YPH499. Cloning and sequencing the genes from these yeasts indicated the presence of 11 single nucleotide polymorphisms in the coding region and eight single nucleotide polymorphisms in the promoter region of the ECM38 gene of YPH499 (but none in that of BY4742). One of the SNPs in the ECM38 ORF led to a G → D conversion in a region conserved in all γ-GT enzymes and was found to be responsible for the loss of activity in this strain. The presence of β-GT activity in other YPH strains led us to trace the origins of the polymorphisms in YPH499. Our results indicated that among the progenitor strains, YPH1 and YPH2, YPH1 carried the polymorphisms seen in YPH499 and also lacked the γ-GT activity. The implications of these results for the use of these widely used S288C strains and the origin of these single nucleotide polymorphisms are presented
The Alternative Pathway of Glutathione Degradation Is Mediated by a Novel Protein Complex Involving Three New Genes in Saccharomyces cerevisiae
Glutathione (GSH), l-γ-glutamyl-l-cysteinyl-glycine, is the major low-molecular-weight thiol compound present in almost all eukaryotic cells. GSH degradation proceeds through the γ-glutamyl cycle that is initiated, in all organisms, by the action of γ-glutamyl transpeptidase. A novel pathway for the degradation of GSH that requires the participation of three previously uncharacterized genes is described in the yeast Saccharomyces cerevisiae. These genes have been named DUG1 (YFR044c), DUG2 (YBR281c), and DUG3 (YNL191w) (defective in utilization of glutathione). Although dipeptides and tripeptides with a normal peptide bond such as cys-gly or glu-cys-gly required the presence of only a functional DUG1 gene that encoded a protein belonging to the M20A metallohydrolase family, the presence of an unusual peptide bond such as in the dipeptide, γ-glu-cys, or in GSH, required the participation of the DUG2 and DUG3 gene products as well. The DUG2 gene encodes a protein with a peptidase domain and a large WD40 repeat region, while the DUG3 gene encoded a protein with a glutamine amidotransferase domain. The Dug1p, Dug2p, and Dug3p proteins were found to form a degradosomal complex through Dug1p–Dug2p and Dug2p–Dug3p interactions. A model is proposed for the functioning of the Dug1p/Dug2p/Dug3p proteins as a specific GSH degradosomal complex
CSmetaPred: a consensus method for prediction of catalytic residues
Abstract Background Knowledge of catalytic residues can play an essential role in elucidating mechanistic details of an enzyme. However, experimental identification of catalytic residues is a tedious and time-consuming task, which can be expedited by computational predictions. Despite significant development in active-site prediction methods, one of the remaining issues is ranked positions of putative catalytic residues among all ranked residues. In order to improve ranking of catalytic residues and their prediction accuracy, we have developed a meta-approach based method CSmetaPred. In this approach, residues are ranked based on the mean of normalized residue scores derived from four well-known catalytic residue predictors. The mean residue score of CSmetaPred is combined with predicted pocket information to improve prediction performance in meta-predictor, CSmetaPred_poc. Results Both meta-predictors are evaluated on two comprehensive benchmark datasets and three legacy datasets using Receiver Operating Characteristic (ROC) and Precision Recall (PR) curves. The visual and quantitative analysis of ROC and PR curves shows that meta-predictors outperform their constituent methods and CSmetaPred_poc is the best of evaluated methods. For instance, on CSAMAC dataset CSmetaPred_poc (CSmetaPred) achieves highest Mean Average Specificity (MAS), a scalar measure for ROC curve, of 0.97 (0.96). Importantly, median predicted rank of catalytic residues is the lowest (best) for CSmetaPred_poc. Considering residues ranked ≤20 classified as true positive in binary classification, CSmetaPred_poc achieves prediction accuracy of 0.94 on CSAMAC dataset. Moreover, on the same dataset CSmetaPred_poc predicts all catalytic residues within top 20 ranks for ~73% of enzymes. Furthermore, benchmarking of prediction on comparative modelled structures showed that models result in better prediction than only sequence based predictions. These analyses suggest that CSmetaPred_poc is able to rank putative catalytic residues at lower (better) ranked positions, which can facilitate and expedite their experimental characterization. Conclusions The benchmarking studies showed that employing meta-approach in combining residue-level scores derived from well-known catalytic residue predictors can improve prediction accuracy as well as provide improved ranked positions of known catalytic residues. Hence, such predictions can assist experimentalist to prioritize residues for mutational studies in their efforts to characterize catalytic residues. Both meta-predictors are available as webserver at: http://14.139.227.206/csmetapred/
Thiol trapping and metabolic redistribution of sulfur metabolites enable cells to overcome cysteine overload
Cysteine is an essential requirement in living organisms. However, due to its reactive thiol side chain, elevated levels of intracellular cysteine can be toxic and therefore need to be rapidly eliminated from the cellular milieu. In mammals and many other organisms, excess cysteine is believed to be primarily eliminated by the cysteine dioxygenase dependent oxidative degradation of cysteine, followed by the removal of the oxidative products. However, other mechanisms of tackling excess cysteine are also likely to exist, but have not thus far been explored. In this study, we use Saccharomyces cerevisiae, which naturally lacks a cysteine dioxygenase, to investigate mechanisms for tackling cysteine overload. Overexpressing the high affinity cysteine transporter, YCT1, enabled yeast cells to rapidly accumulate high levels of intracellular cysteine. Using targeted metabolite analysis, we observe that cysteine is initially rapidly interconverted to non-reactive cystine in vivo. A time course revealed that cells systematically convert excess cysteine to inert thiol forms; initially to cystine, and subsequently to cystathionine, S-Adenosyl-L-homocysteine (SAH) and S-Adenosyl L-methionine (SAM), in addition to eventually accumulating glutathione (GSH) and polyamines. Microarray based gene expression studies revealed the upregulation of arginine/ornithine biosynthesis a few hours after the cysteine overload, and suggest that the non-toxic, non-reactive thiol based metabolic products are eventually utilized for amino acid and polyamine biogenesis, thereby enabling cell growth. Thus, cells can handle potentially toxic amounts of cysteine by a combination of thiol trapping, metabolic redistribution to non-reactive thiols and subsequent consumption for anabolism
Dug1p Is a Cys-Gly Peptidase of the γ-Glutamyl Cycle of Saccharomyces cerevisiae and Represents a Novel Family of Cys-Gly Peptidases
GSH metabolism in yeast is carried out by the γ-glutamyl cycle as
well as by the DUG complex. One of the last steps in the
γ-glutamyl cycle is the cleavage of Cys-Gly by a peptidase to the
constitutent amino acids. Saccharomyces cerevisiae extracts carry
Cys-Gly dipeptidase activity, but the corresponding gene has not yet been
identified. We describe the isolation and characterization of a novel Cys-Gly
dipeptidase, encoded by the DUG1 gene. Dug1p had previously been
identified as part of the Dug1p-Dug2p-Dug3p complex that operates as an
alternate GSH degradation pathway and has also been suggested to function as a
possible di- or tripeptidase based on genetic studies. We show here that Dug1p
is a homodimer that can also function in a Dug2-Dug3-independent manner as a
dipeptidase with high specificity for Cys-Gly and no activity toward tri- or
tetrapeptides in vitro. This activity requires zinc or manganese
ions. Yeast cells lacking Dug1p (dug1Δ) accumulate Cys-Gly.
Unlike all other Cys-Gly peptidases, which are members of the metallopeptidase
M17, M19, or M1 families, Dug1p is the first to belong to the M20A family. We
also show that the Dug1p Schizosaccharomyces pombe orthologue
functions as the exclusive Cys-Gly peptidase in this organism. The human
orthologue CNDP2 also displays Cys-Gly peptidase activity, as seen by
complementation of the dug1Δ mutant and by biochemical
characterization, which revealed a high substrate specificity and affinity for
Cys-Gly. The results indicate that the Dug1p family represents a novel class
of Cys-Gly dipeptidases