5 research outputs found

    Comparison of three bioinformatics tools in the detection of ASD candidate variants from whole exome sequencing data

    No full text
    Abstract Autism spectrum disorder (ASD) is a heterogenous multifactorial neurodevelopmental condition with a significant genetic susceptibility component. Thus, identifying genetic variations associated with ASD is a complex task. Whole-exome sequencing (WES) is an effective approach for detecting extremely rare protein-coding single-nucleotide variants (SNVs) and short insertions/deletions (INDELs). However, interpreting these variants' functional and clinical consequences requires integrating multifaceted genomic information. We compared the concordance and effectiveness of three bioinformatics tools in detecting ASD candidate variants (SNVs and short INDELs) from WES data of 220 ASD family trios registered in the National Autism Database of Israel. We studied only rare (< 1% population frequency) proband-specific variants. According to the American College of Medical Genetics (ACMG) guidelines, the pathogenicity of variants was evaluated by the InterVar and TAPES tools. In addition, likely gene-disrupting (LGD) variants were detected based on an in-house bioinformatics tool, Psi-Variant, that integrates results from seven in-silico prediction tools. Overall, 372 variants in 311 genes distributed in 168 probands were detected by these tools. The overlap between the tools was 64.1, 22.9, and 23.1% for InterVar–TAPES, InterVar–Psi-Variant, and TAPES–Psi-Variant, respectively. The intersection between InterVar and Psi-Variant (I ∩ P) was the most effective approach in detecting variants in known ASD genes (PPV = 0.274; OR = 7.09, 95% CI = 3.92–12.22), while the union of InterVar and Psi Variant (I U P) achieved the highest diagnostic yield (20.5%).Our results suggest that integrating different variant interpretation approaches in detecting ASD candidate variants from WES data is superior to each approach alone. The inclusion of additional criteria could further improve the detection of ASD candidate variants

    Adherence to treatment and parents’ perspective about effectiveness of melatonin in children with autism spectrum disorder and sleep disturbances

    No full text
    Abstract Objective Melatonin is considered an effective pharmacological treatment for the sleep disturbances that are reported in > 50% of children with autism spectrum disorder (ASD). However, real-life data about the long-term course and effectiveness of melatonin treatment in children with ASD is lacking. Methods In this retrospective cohort study, we assessed the adherence to melatonin treatment and parents’ perspective of its effect on sleep quality and daytime behavior in children with ASD via a parental phone survey of children in the Azrieli National Center for Autism and Neurodevelopment Research (ANCAN) database. Cox regression analysis was used to assess the effect of key demographic and clinical characteristics on treatment adherence. Results Melatonin was recommended for ~ 8% of children in the ANCAN database. These children were characterized by more severe symptoms of autism. The median adherence time for melatonin treatment exceeded 88 months, with the most common reason for discontinuation being a lack of effectiveness (14%). Mild side-effects were reported in 14% of children, and 86%, 54%, and 45% experienced improvements in sleep onset, sleep duration and night awakenings, respectively. Notably, melatonin also improved the daytime behaviors of > 28% of the children. Adherence to treatment was independently associated with improvements in night awakenings and educational functioning (aHR = 0.142, 95%CI = 0.036–0.565; and aHR = 0.195, 95%CI = 0.047–0.806, respectively). Conclusions Based on parents’ report, melatonin is a safe and effective treatment that improves both sleep difficulties and daily behavior of children with ASD

    Sleep disturbances are associated with specific sensory sensitivities in children with autism

    No full text
    Abstract Background Sensory abnormalities and sleep disturbances are highly prevalent in children with autism, but the potential relationship between these two domains has rarely been explored. Understanding such relationships is important for identifying children with autism who exhibit more homogeneous symptoms. Methods Here, we examined this relationship using the Caregiver Sensory Profile and the Children’s Sleep Habits Questionnaire, which were completed by parents of 69 children with autism and 62 age-matched controls. Results In line with previous studies, children with autism exhibited more severe sensory abnormalities and sleep disturbances than age-matched controls. The sleep disturbance scores were moderately associated with touch and oral sensitivities in the autism group and with touch and vestibular sensitivities in the control group. Hypersensitivity towards touch, in particular, exhibited the strongest relationship with sleep disturbances in the autism group and single-handedly explained 24% of the variance in total sleep disturbance scores. In contrast, sensitivity in other sensory domains such as vision and audition was not associated with sleep quality in either group. Conclusions While it is often assumed that sensitivities in all sensory domains are similarly associated with sleep problems, our results suggest that hypersensitivity towards touch exhibits the strongest relationship with sleep disturbances when examining children autism. We speculate that hypersensitivity towards touch interferes with sleep onset and maintenance in a considerable number of children with autism who exhibit severe sleep disturbances. This may indicate the existence of a specific sleep disturbance mechanism that is associated with sensitivity to touch, which may be important to consider in future scientific and clinical studies

    Diagnostic Yield and Economic Implications of Whole-Exome Sequencing for ASD Diagnosis in Israel

    No full text
    Whole-exome sequencing (WES) is an effective approach to identify the susceptibility of genetic variants of autism spectrum disorder (ASD). The Israel Ministry of Health supports WES as an adjunct tool for ASD diagnosis, despite its unclear diagnostic yield and cost effectiveness. To address this knowledge gap, we applied WES to a population-based sample of 182 Bedouin and Jewish children with ASD from southern Israel, and assessed its yield in a gene panel of 205 genes robustly associated with ASD. We then compared the incremental cost-effectiveness ratios (ICERs) for an ASD diagnosis by WES, chromosomal microarray analysis (CMA), and CMA + WES. Overall, 32 ASD candidate variants were detected in 28 children, corresponding to an overall WES diagnostic yield of 15.4%. Interestingly, the diagnostic yield was significantly higher for the Bedouin children than for the Jewish children, i.e., 27.6% vs. 11.1% (p = 0.036). The most cost-effective means for genetic testing was the CMA alone, followed closely by the CMA + WES strategy (ICER = USD 117 and USD 124.8 per child). Yet, WES alone could become more cost effective than the other two approaches if there was to be a 25% increase in its yield or a 50% decrease in its cost. These findings suggest that WES should be recommended to facilitate ASD diagnosis in Israel, especially for highly consanguineous populations, such as the Bedouin
    corecore