4 research outputs found

    A System for Performing High Throughput Assays of Synaptic Function

    Get PDF
    Unbiased, high-throughput screening has proven invaluable for dissecting complex biological processes. Application of this general approach to synaptic function would have a major impact on neuroscience research and drug discovery. However, existing techniques for studying synaptic physiology are labor intensive and low-throughput. Here, we describe a new high-throughput technology for performing assays of synaptic function in primary neurons cultured in microtiter plates. We show that this system can perform 96 synaptic vesicle cycling assays in parallel with high sensitivity, precision, uniformity, and reproducibility and can detect modulators of presynaptic function. By screening libraries of pharmacologically defined compounds on rat forebrain cultures, we have used this system to identify novel effects of compounds on specific aspects of presynaptic function. As a system for unbiased compound as well as genomic screening, this technology has significant applications for basic neuroscience research and for the discovery of novel, mechanism-based treatments for central nervous system disorders

    Dopamine D1-Dependent Trafficking of Striatal N-

    No full text

    N-acetyl-serotonin offers neuroprotection through inhibiting mitochondrial death pathways and autophagic activation in experimental models of ischemic injury

    No full text
    N-acetylserotonin (NAS) is an immediate precursor of melatonin, which we have reported is neuroprotective against ischemic injury. Here we test whether NAS is a potential neuroprotective agent in experimental models of ischemic injury. We demonstrate that NAS inhibits cell death induced by oxygen–glucose deprivation or H(2)O(2) in primary cerebrocortical neurons and primary hippocampal neurons in vitro, and organotypic hippocampal slice cultures ex vivo and reduces hypoxia/ischemia injury in the middle cerebral artery occlusion mouse model of cerebral ischemia in vivo. We find that NAS is neuroprotective by inhibiting the mitochondrial cell death pathway and the autophagic cell death pathway. The neuroprotective effects of NAS may result from the influence of mitochondrial permeability transition pore opening, mitochondrial fragmentation, and inhibition of the subsequent release of apoptogenic factors cytochrome c, Smac, and apoptosis-inducing factor from mitochondria to cytoplasm, and activation of caspase-3, -9, as well as the suppression of the activation of autophagy under stress conditions by increasing LC3-II and Beclin-1 levels and decreasing p62 level. However, NAS, unlike melatonin, does not provide neuroprotection through the activation of melatonin receptor 1A. We demonstrate that NAS reaches the brain subsequent to intraperitoneal injection using liquid chromatography/mass spectrometry analysis. Given that it occurs naturally and has low toxicity, NAS, like melatonin, has potential as a novel therapy for ischemic injury
    corecore