10 research outputs found

    Association between nasal shedding and fever that influenza A (H3N2) induces in dogs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV) H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs.</p> <p>Methods</p> <p>An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation.</p> <p>Results</p> <p>The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing) during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5°C (geometric mean temperature of 39.86°C±0.49) were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID<sub>50</sub>/ml, which was significantly higher than the viral titer detected in the non fever.</p> <p>Conclusions</p> <p>The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.</p

    Attenuation mechanism of Brucella melitensis M5-10, implications for vaccine development and differential diagnosis

    No full text
    Brucellosis is a worldwide zoonosis. Vaccination is the most efficient means to prevent and control brucellosis. The current licensed attenuated vaccines for animal use were developed by sequential passage in non-natural hosts that decreased virulence in its original hosts. The attenuation mechanism of these strains remains largely unknown. In the present study, we sequenced the genome of Brucella melitensis vaccine strain M5-10. Sequence analysis showed that a large number of genetic changes occurred in the vaccine strains. A total of 2854 genetic polymorphic sites, including 2548 SNP, 241 INDEL and 65 MNV were identified. Of the 2074 SNPs in coding regions, 1310 (63.2%) were non-synonymous SNPs. Gene number, percent and N/S ratios were disproportionally distributed among the cog categories. Genetic polymorphic sites were identified in genes of the virB operon, flagella synthesis, and virulence regulating systems. These data indicate that changes in some cog categories and virulence genes might result in the attenuation. These attenuation mechanisms also have implications for screening and development of new vaccine strains. The genetic changes in the genome represent candidate sites for differential diagnosis between these vaccine strains and other virulence ones. Transcription analysis of virulence genes showed that expression of dnaK, vjbR were reduced in M5-10 strain when compared with that in 16M. A duplex PCR targeting virB6 and dnaK was successfully used to differentiate between M5-10 and the virulent 16M strain. The genome re-sequencing technique represents a strong strategy not only for evaluation of vaccines, but also for development of new vaccines

    Augmentation of the RNA m6A reader signature is associated with poor survival by enhancing cell proliferation and EMT across cancer types

    No full text
    Cancer: The role of modifications to RNA Studying the effects of a chemical modification of messenger RNA molecules (mRNA), which carry genetic information from DNA to the cell&apos;s protein-making machinery, reveals new insights into the role of these modifications in cancer, suggesting potential therapeutic approaches. Researchers in Seoul, South Korea, led by Joon-Yong An at Korea University and Sung-Yup Cho at Seoul National University investigated the most common modifications of mRNA involving methyl groups (CH3): addition (&apos;writing&apos;), having a regulatory effect on the cell (&apos;reading&apos;) or removal (&apos;erasing&apos;). The molecular activities involved in reading the modifications were increased in all 11 types of cancer in cancer-sampling databases and their own patient cohort. Changes in writing and erasing of the modifications varied with cancer type. The proteins that mediate the reading responses to RNA methylation are possible targets for new anti-cancer drugs. N-6-Methyladenosine (m6A) RNA modification plays a critical role in the posttranscriptional regulation of gene expression. Alterations in cellular m6A levels and m6A-related genes have been reported in many cancers, but whether they play oncogenic or tumor-suppressive roles is inconsistent across cancer types. We investigated common features of alterations in m6A modification and m6A-related genes during carcinogenesis by analyzing transcriptome data of 11 solid tumors from The Cancer Genome Atlas database and our in-house gastric cancer cohort. We calculated m6A writer (W), eraser (E), and reader (R) signatures based on corresponding gene expression. Alterations in the W and E signatures varied according to the cancer type, with a strong positive correlation between the W and E signatures in all types. When the patients were divided according to m6A levels estimated by the ratio of the W and E signatures, the prognostic effect of m6A was inconsistent according to the cancer type. The R and especially the R2 signatures (based on the expression of IGF2BPs) were upregulated in all cancers. Patients with a high R2 signature exhibited poor prognosis across types, which was attributed to enrichment of cell cycle- and epithelial-mesenchymal transition-related pathways. Our study demonstrates common features of m6A alterations across cancer types and suggests that targeting m6A R proteins is a promising strategy for cancer treatment.N

    CRISPR screens identify a novel combination treatment targeting BCL-X L and WNT signaling for KRAS/BRAF-mutated colorectal cancers

    No full text
    Metastatic or recurrent colorectal cancer (CRC) patients require systemic chemotherapy, but the therapeutic options of targeted agents remain limited. CRC patients with KRAS or BRAF gene mutations exhibit a worse prognosis and are resistant to anti-EGFR treatment. Previous studies have shown that the expression of anti-apoptotic protein BCL-XL is increased in CRC patients with KRAS/BRAF mutations, suggesting BCL-XL as a therapeutic target for this subgroup. Here, we performed genome-wide CRISPR/Cas9 screens of cell lines with KRAS mutations to investigate the factors required for sensitivity to BCL-XL inhibitor ABT-263 using single-guide RNAs (sgRNAs) that induce loss-of-function mutations. In the presence of ABT-263, sgRNAs targeting negative regulators of WNT signaling (resulting in WNT activation) were enriched, whereas sgRNAs targeting positive regulators of WNT signaling (resulting in WNT inhibition) were depleted in ABT-263-resistant cells. The activation of WNT signaling was highly associated with an increased expression ratio of anti- to pro-apoptotic BCL-2 family genes in CRC samples. Genetic and pharmacologic inhibition of WNT signaling using β-catenin short hairpin RNA or TNIK inhibitor NCB-0846, respectively, augmented ABT-263-induced cell death in KRAS/BRAF-mutated cells. Inhibition of WNT signaling resulted in transcriptional repression of the anti-apoptotic BCL-2 family member, MCL1, via the functional inhibition of the β-catenin-containing complex at the MCL1 promoter. In addition, the combination of ABT-263 and NCB-0846 exhibited synergistic effects in in vivo patient-derived xenograft (PDX) models with KRAS mutations. Our data provide a novel targeted combination treatment strategy for the CRC patient subgroup with KRAS or BRAF mutations
    corecore