2,614 research outputs found

    Impatient DNNs - Deep Neural Networks with Dynamic Time Budgets

    Full text link
    We propose Impatient Deep Neural Networks (DNNs) which deal with dynamic time budgets during application. They allow for individual budgets given a priori for each test example and for anytime prediction, i.e., a possible interruption at multiple stages during inference while still providing output estimates. Our approach can therefore tackle the computational costs and energy demands of DNNs in an adaptive manner, a property essential for real-time applications. Our Impatient DNNs are based on a new general framework of learning dynamic budget predictors using risk minimization, which can be applied to current DNN architectures by adding early prediction and additional loss layers. A key aspect of our method is that all of the intermediate predictors are learned jointly. In experiments, we evaluate our approach for different budget distributions, architectures, and datasets. Our results show a significant gain in expected accuracy compared to common baselines.Comment: British Machine Vision Conference (BMVC) 201

    Modeling many-particle mechanical effects of an interacting Rydberg gas

    Full text link
    In a recent work [Phys. Rev. Lett. 98, 023004 (2007)] we have investigated the influence of attractive van der Waals interaction on the pair distribution and Penning ionization dynamics of ultracold Rydberg gases. Here we extend this description to atoms initially prepared in Rydberg states exhibiting repulsive interaction. We present calculations based on a Monte Carlo algorithm to simulate the dynamics of many atoms under the influence of both repulsive and attractive longrange interatomic forces. Redistribution to nearby states induced by black body radiation is taken into account, changing the effective interaction potentials. The model agrees with experimental observations, where the ionization rate is found to increase when the excitation laser is blue-detuned from the atomic resonance

    Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas

    Get PDF
    We present time-resolved spectroscopic measurements of Rydberg-Rydberg interactions in an ultracold gas, revealing the pair dynamics induced by long-range van der Waals interactions between the atoms. By detuning the excitation laser, a specific pair distribution is prepared. Penning ionization on a microsecond timescale serves as a probe for the pair dynamics under the influence of the attractive long-range forces. Comparison with a Monte Carlo model not only explains all spectroscopic features but also gives quantitative information about the interaction potentials. The results imply that the interaction-induced ionization rate can be influenced by the excitation laser. Surprisingly, interaction-induced ionization is also observed for Rydberg states with purely repulsive interactions

    Experimental verification of the very strong coupling regime in a GaAs quantum well microcavity

    Get PDF
    When the coupling between light and matter becomes comparable to the energy gap between different excited states they hybridize, leading to the appearance of a rich and complex phenomenology which attracted remarkable interest in recent years. While the mixing between states with different number of excitations, so-called ultrastrong coupling regime, has been observed in various implementations, the effect of the hybridization between different single excitation states, referred to as very strong coupling regime, has remained elusive. In semiconductor quantum wells such a regime is predicted to manifest as a photon-mediated electron-hole coupling leading to different excitonic wavefunctions for the two polaritonic branches when the ratio of the coupling strength to exciton binding energy approaches unity. Here, we verify experimentally the existence of this regime in magneto-optical measurements on a microcavity with 28 GaAs quantum wells, showing that the average electron-hole separation of the upper polariton is significantly increased compared to the bare quantum well exciton Bohr radius. This manifests in a diamagnetic shift around zero detuning that exceeds the shift of the lower polariton by one order of magnitude and the bare quantum well exciton diamagnetic shift by a factor of two. The lower polariton exhibits a diamagnetic shift smaller than expected from the coupling of a rigid exciton to the cavity mode which suggests more tightly bound electron-hole pairs than in the bare quantum well

    Suppression of Excitation and Spectral Broadening Induced by Interactions in a Cold Gas of Rydberg Atoms

    Full text link
    We report on the observation of ultralong range interactions in a gas of cold Rubidium Rydberg atoms. The van-der-Waals interaction between a pair of Rydberg atoms separated as far as 100,000 Bohr radii features two important effects: Spectral broadening of the resonance lines and suppression of excitation with increasing density. The density dependence of these effects is investigated in detail for the S- and P- Rydberg states with main quantum numbers n ~ 60 and n ~ 80 excited by narrow-band continuous-wave laser light. The density-dependent suppression of excitation can be interpreted as the onset of an interaction-induced local blockade

    Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    Full text link
    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,γ\gamma), (α\alpha,γ\gamma), and (α\alpha,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape X-ray burst observables and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.Comment: 24 pages, 13 figures, 4 tables, submitte

    Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters

    Get PDF
    Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver and parameter changes were prescribed principally to be large enough to identify and isolate any major differences in model responses, while also remaining within the range of variability that the boreal forest biome may be exposed to over a time period of several decades. The models simulated plant production, autotrophic and heterotrophic respiration, and evapotranspiration (ET) for a black spruce site in the boreal forest of central Canada (56°N). Results revealed that there were common model responses in gross primary production, plant respiration, and ET fluxes to prescribed changes in air temperature or surface irradiance and to decreased precipitation amounts. The models were also similar in their responses to variations in canopy leaf area, leaf nitrogen content, and surface organic layer thickness. The models had different sensitivities to certain parameters, namely the net primary production response to increased CO2 levels, and the response of soil microbial respiration to precipitation inputs and soil wetness. These differences can be explained by the type (or absence) of photosynthesis-CO2 response curves in the models and by response algorithms of litter and humus decomposition to drying effects in organic soils of the boreal spruce ecosystem. Differences in the couplings of photosynthesis and soil respiration to nitrogen availability may also explain divergent model responses. Sensitivity comparisons imply that past conditions of the ecosystem represented in the models\u27 initial standing wood and soil carbon pools, including historical climate patterns and the time since the last major disturbance, can be as important as potential climatic changes to prediction of the annual ecosystem carbon balance in this boreal spruce forest
    corecore