12 research outputs found

    Fast Pyrolysis of Hemicelluloses into Short-Chain Acids: An Investigation on Concerted Mechanisms

    Get PDF
    The nature of the main primary mechanisms involved in lignocellulosic fast pyrolysis is often assumed to be radical mechanisms. Here we demonstrate that thermal depolymerization of native hemicelluloses can undergo several primary and secondary concerted reactions leading to light oxygenates that can compete with radical mechanisms. To model these reactions at a microscopic level, we used high-level quantum calculations based on functional theory. In parallel, a set of experimental data was collected to confirm the main structural features of extracted and purified hemicelluloses and to describe chemical variations within fast pyrolysis products released from various hemicellulosic fractions at 823 K. In general, the barriers computed at 800 K for pericyclic reactions were found to be reasonably low competing with these of homolytic reactions. The critical role of hydrogen bonding and spatial arrangement on product distribution was clearly demonstrated, stabilizing effects depending greatly on temperature. We reported a useful data set of intrinsic kinetic parameters and a reaction network readily available to complete kinetic models for “primary” and “secondary” fast pyrolysis of hemicelluloses

    Interactions between callose and cellulose revealed through the analysis of biopolymer mixtures.

    Get PDF
    The properties of (1,3)-β-glucans (i.e., callose) remain largely unknown despite their importance in plant development and defence. Here we use mixtures of (1,3)-β-glucan and cellulose, in ionic liquid solution and hydrogels, as proxies to understand the physico-mechanical properties of callose. We show that after callose addition the stiffness of cellulose hydrogels is reduced at a greater extent than predicted from the ideal mixing rule (i.e., the weighted average of the individual components' properties). In contrast, yield behaviour after the elastic limit is more ductile in cellulose-callose hydrogels compared with sudden failure in 100% cellulose hydrogels. The viscoelastic behaviour and the diffusion of the ions in mixed ionic liquid solutions strongly indicate interactions between the polymers. Fourier-transform infrared analysis suggests that these interactions impact cellulose organisation in hydrogels and cell walls. We conclude that polymer interactions alter the properties of callose-cellulose mixtures beyond what it is expected by ideal mixing

    Stomatal Opening Involves Polar, Not Radial, Stiffening Of Guard Cells

    Get PDF
    It has long been accepted that differential radial thickening of guard cells plays an important role in the turgor-driven shape changes required for stomatal pore opening to occur [1-4]. This textbook description derives from an original interpretation of structure rather than measurement of mechanical properties. Here we show, using atomic force microscopy, that although mature guard cells display a radial gradient of stiffness, this is not present in immature guard cells, yet young stomata show a normal opening response. Finite element modeling supports the experimental observation that radial stiffening plays a very limited role in stomatal opening. In addition, our analysis reveals an unexpected stiffening of the polar regions of the stomata complexes, both in Arabidopsis and other plants, suggesting a widespread occurrence. Combined experimental data (analysis of guard cell wall epitopes and treatment of tissue with cell wall digesting enzymes, coupled with bioassay of guard cell function) plus modeling lead us to propose that polar stiffening reflects a mechanical, pectin-based pinning down of the guard cell ends, which restricts increase of stomatal complex length during opening. This is predicted to lead to an improved response sensitivity of stomatal aperture movement with respect to change of turgor pressure. Our results provide new insight into the mechanics of stomatal function, both negating an established view of the importance of radial thickening and providing evidence for a significant role for polar stiffening. Improved stomatal performance via altered cell-wall-mediated mechanics is likely to be of evolutionary and agronomic significance

    Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall

    Get PDF
    Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils, our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in unesterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO2, substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology

    Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils

    Get PDF
    Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.Bourdon et al. demonstrate the possibility to ectopically synthesize callose, a polymer restricted to primary cell walls, into Arabidopsis and aspen secondary cell walls to manipulate their ultrastructure and ultimately reduce their recalcitrance

    Sensing Attack: The Role of Wall-Associated Kinases in Plant Pathogen Responses

    No full text

    Raw data for "A comparative meta-proteomic pipeline for the identification of plasmodesmata proteins and regulatory conditions in diverse plant species"

    No full text
    This repository contains the raw data for the publication listed in the title. Abstract: A major route for cell-to-cell signaling in plants is mediated by cell wall-embedded pores termed plasmodesmata forming the symplasm. Plasmodesmata regulate plant development and responses to the environment however, our understanding of what factors or regulatory cues affect their structure and permeability is still limited. In this paper, a meta-analysis was carried out for the identification of conditions affecting plasmodesmata transport and for the in silico prediction of plasmodesmata proteins in species for which the plasmodesmata proteome has not been experimentally determined
    corecore