147 research outputs found
Structural and biochemical characterization of a new type of lectin isolated from carp eggs.
A previously unidentified glycoprotein present in the eggs of the carp (Cyprinus carpio) was isolated and structurally characterized. The protein binds to a Sepharose 4B matrix and can be eluted with 0.4 M N-acetylglucosamine. The protein has an apparent molecular mass of 26686.3 Da. On the basis of gel-filtration chromatography, the protein appears to be present in solution as a monomer. The sequence of its 238 amino acids, the position of its four disulphide bridges and the composition of its single N-linked carbohydrate chain were determined. The lectin shows a very low agglutinating activity for human A-type erythrocytes and interacts with both Gram-positive and -negative bacteria. These latter interactions are inhibited by N-acetylglucosamine. A database search shows that its amino acid sequence is similar to that of the members of an invertebrate lectin family that includes tachylectin-1. Tachylectin-1 is present in the amoebocytes of the horseshoe crab, Tachypleus tridentatus, and plays a role in the innate defence system of this species. Homologous genes are also present in other fish, having 85% identity with a gene expressed in the oocytes of the crucian carp (Carassius auratus gibelio) and 78% identity with a gene in the cDNA library of the zebrafish (Danio rerio)
The regions of the sequence most exposed to the solvent within the amyloidogenic state of a protein initiate the aggregation process.
Formation of misfolded aggregates is an essential part of what proteins can do. The process of protein aggregation is central to many human diseases and any aggregating event needs to be prevented within a cell and in protein design. In order to aggregate, a protein needs to unfold its native state, at least partially. The conformational state that is prone to aggregate is difficult to study, due to its aggregating potential and heterogeneous nature. Here, we use a systematic approach of limited proteolysis, in combination with electrospray ionisation mass spectrometry, to investigate the regions that are most flexible and solvent-exposed within the native, ligand-bound and amyloidogenic states of muscle acylphosphatase (AcP), a protein previously shown to form amyloid fibrils in the presence of trifluoroethanol. Seven proteases with different degrees of specificity have been used for this purpose. Following exposure to the aggregating conditions, a number of sites along the sequence of AcP become susceptible to proteolytic digestion. The pattern of proteolytic cleavages obtained under these conditions is considerably different from that of the native and ligand-bound conformations and includes a portion within the N-terminal tail of the protein (residues 6-7), the region of the sequence 18-23 and the position 94 near the C terminus. There is a significant overlap between the regions of the sequence found to be solvent-exposed from the present study and those previously identified to be critical in the rate-determining steps of aggregation from protein engineering approaches. This indicates that a considerable degree of solvent exposure is a feature of the portions of a protein that initiate the process of aggregation
Direct interactions among Ret, GDNF and GFRalpha1 molecules reveal new insights into the assembly of a functional three-protein complex.
The glial-cell-line-derived neurotrophic factor (GDNF) ligand activates the Ret receptor through the assembly of a multiprotein complex, including the GDNF family receptor α1 (GFRα1) molecule. Given the neuroprotective role of GDNF, there is an obvious need to precisely identify the structural regions engaged in direct interactions between the three molecules. Here, we combined a functional approach for Ret activity (in PC12 cells) to cross-linking experiments followed by MS-MALDI to study the interactions among the purified extracellular region of the human Ret, GDNF and GFRα1 molecules. This procedure allowed us to identify distinct regions of Ret that are physically engaged in the interaction with GDNF and GFRα1. The lack of these regions in a recombinant Ret form results in the failure of both structural and functional binding of Ret to GFRα1/GDNF complex. Furthermore, a model for the assembly of a transducing-competent Ret complex is suggeste
The effects of two gold-N-heterocyclic carbene (NHC) complexes in ovarian cancer cells: a redox proteomic study
Purpose: Ovarian cancer is the fifth leading cause of cancer-related deaths in women. Standard treatment consists of tumor debulking surgery followed by platinum and paclitaxel chemotherapy; yet, despite the initial response, about 70-75% of patients develop resistance to chemotherapy. Gold compounds represent a family of very promising anticancer drugs. Among them, we previously investigated the cytotoxic and pro-apoptotic properties of Au(NHC) and Au(NHC)2PF6, i.e., a monocarbene gold(I) complex and the corresponding bis(carbene) complex. Gold compounds are known to alter the redox state of cells interacting with free cysteine and selenocysteine residues of several proteins. Herein, a redox proteomic study has been carried out to elucidate the mechanisms of cytotoxicity in A2780 human ovarian cancer cells. Methods: A biotinylated iodoacetamide labeling method coupled with mass spectrometry was used to identify oxidation-sensitive protein cysteines. Results: Gold carbene complexes cause extensive oxidation of several cellular proteins; many affected proteins belong to two major functional classes: carbohydrate metabolism, and cytoskeleton organization/cell adhesion. Among the affected proteins, Glyceraldehyde-3-phosphate dehydrogenase inhibition was proved by enzymatic assays and by ESI-MS studies. We also found that Au(NHC)2PF6 inhibits mitochondrial respiration impairing complex I function. Concerning the oxidized cytoskeletal proteins, gold binding to the free cysteines of actin was demonstrated by ESI-MS analysis. Notably, both gold compounds affected cell migration and invasion. Conclusions: In this study, we deepened the mode of action of Au(NHC) and Au(NHC)2PF6, identifying common cellular targets but confirming their different influence on the mitochondrial function
Serratiopeptidase: a well-known metalloprotease with a new non-proteolytic activity against S. aureus biofilm
Background
The use of indwelling medical devices is associated with a significant risk of infections by Staphylococcus aureus (S. aureus) which possesses a variety of virulence factors including many toxins and the ability to invade eukaryotic cells or to form biofilm on biotic and abiotic surfaces. The virulence factors above described are often related to proteins exposed on the bacterial surface. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases. Previously reports evaluated the anti-infective properties of serratiopeptidase (Spep), an extracellular metalloprotease produced by Serratia marcescens ATCC 21074 (E-15), in impairing virulence-related staphylococcal properties, such as attachment to inert surfaces and adhesion/invasion on eukaryotic cells. However, to date its mechanism of action is unknown.
Methods
Spep gene was PCR amplified and cloned into expression vector pET28b(+). The mutant EspepA was constructed from plasmid pET28b-Spep applying the one-step overlap extension PCR strategy. There sulting plasmids were costransformed in EcBL21(DE3) cells with the plasmid pRuW4inh1 harboring the Erwinia chrysanthemi secretion system. Bacterial pellets and supernatants were collected and analyzed by SDS-PAGE and zymography. The unambiguous identification and a detailed structure characterization of both the wild type and the mutant Spep were obtained by mass spectrometric analyses. The resultant supernatants sterilized by filtration were separately used to condition biofilm formation of S. aureus. Quantification was based on crystal violet method.
Results
In this work we constructed Spep mutant by substituting the glutamic acid in the catalytic site with a residue of alanine. In this manner we were able to evaluate the anti-biofilm activity of Spep mutant in absence of proteolytic activity. As expected, this mutant did not display protease activity but it retained its anti-biofilm properties, suggesting that this action is independent by enzymatic activity.
Conclusions
New knowledge obtained from data reported in this paper calls attention to a novel mechanism of action of Spep. This protein could be developed as a potential “antipathogenic agent” capable to impair the ability of S. aureus to form biofilm on prostheses, catheters and medical devices, exploiting a mechanism different from the proteolytic activity
A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus.
Staphylococcus aureus is a flexible microbial pathogen frequently isolated from community-acquired and nosocomial infections. S. aureus expresses a wide array of secreted and cell surface-associated virulence factors, including proteins that promote adhesion to damaged tissue and to the surface of host cells, and that bind proteins in blood to help evade immune responses. Furthermore, surface proteins have a fundamental role in virulence related properties of S. aureus, including biofilm formation. The present study evaluates the anti-infective capabilities of a secreted protein of Serratia marcescens (serratiopeptidase, SPEP), in impairing some staphylococcal virulence-related properties, such as attachment to inert surfaces and adhesion/invasion on eukaryotic cells. SPEP seems to exert its action by modulating specific proteins. It is not assessed if this action is due to the proteolytic activity of SPEP or to a specific mechanism which triggers an out/inside signal. Proteomic studies performed on surface proteins extracted from SPEP treated S. aureus cultures revealed that a number of proteins are affected by the treatment. Among these we found the adhesin/autolysin Atl, SdrD, Sbi, EF-Tu and EF-G. EF-Tu and EF-G are known to perform a variety of function, depending on their cytoplasmic or surface localization. All these factors can facilitate bacterial colonization, persistence and invasion of host tissues. Our results suggest that SPEP could be developed as a potential "anti-infective agent" capable to hinder the entry of S. aureus into human tissues, and also impairs the ability of this pathogen to adhere to prostheses, catheters and medical device
The peculiar structural features of kiwi fruit pectin methylesterase: amino acid sequence, oligosaccharides structure, and modeling of the interaction with its natural proteinaceous inhibitor
Pectin methylesterase (PME) from kiwi fruit (Actinidia deliciosa) is a glycoprotein, showing an apparent molecular mass of 50 kDa upon size exclusion chromatography and SDS-PAGE. The primary structure, elucidated by direct sequencing of the protein, comprises 321 amino acid residues providing a molecular mass of 35 kDa. The protein has an acetylated Thr residue at the amino terminus and five N-glycosylation consensus sequences, four of which are actually glycosylated. A careful investigation of the oligosaccharide structures demonstrated that PME glycans belong to complex type oligosaccharides essentially consisting of xylosylated polyfucosylated biantennary structures. Alignment with known mature plant PME sequences indicates that the postulated active site residues are conserved. Kiwi PME activity is inhibited following the interaction with the proteinaceous inhibitor PMEI, isolated from the same source. Gel-filtration experiments show that kiwi PME/PMEI complex is stable in a large pH range and dissociates only at pH 10.0. Modeling of the interaction with the inhibitor was performed by using the crystal structure of the complex between kiwi PMEI and tomato PME as a template. The model shows that the binding site is the same reported for tomato PME. However, additional salt link interactions are found to connect the external loops of kiwi PME to PMEI. This finding may explain the higher pH stability of the complex formed by the two kiwi proteins respect to that formed by PMEI and tomato PME
Tuber borchii fruit body: 2-dimensional profile and protein identification
The formation of the fruit body represents the final phase of the ectomycorrhizal fungus T. borchii life cycle. Very little is known concerning the molecular and biochemical processes involved in the fructification phase. 2-DE maps of unripe and ripe ascocarps revealed different protein expression levels and the comparison of the electropherograms led to the identification of specific proteins for each developmental phase. Associating micropreparative 2-DE to microchemical approaches, such as N-terminal sequencing and 2-D gel-electrophoresis mass-spectrometry, proteins playing pivotal roles in truffle physiology were identifie
Nutritional controlled preparation and administration of different tomato purées indicate increase of β-carotene and lycopene isoforms, and of antioxidant potential in human blood bioavailability: A pilot study
The isoforms of lycopene, carotenoids, and their derivatives including precursors of vitamin A are compounds relevant for preventing chronic degenerative diseases such as cardiovascular diseases and cancer. Tomatoes are a major source of these compounds. However, cooking and successive metabolic processes determine the bioavailability of tomatoes in human nutrition. To evaluate the effect of acute/chronic cooking procedures on the bioavailability of lycopene and carotene isoforms in human plasma, we measured the blood levels of these compounds and of the serum antioxidant potential in volunteers after a meal containing two different types of tomato sauce (rustic or strained). Using a randomized cross-over administration design, healthy volunteers were studied, and the above indicated compounds were determined by HPLC. The results indicate an increased bioavailability of the estimated compounds and of the serum antioxidant potential with both types of tomato purée and the subsequently derived sauces (the increase was greater with strained purée). This study sheds light on the content of nutrient precursors of vitamin A and other antioxidant compounds derived from tomatoes cooked with different strategies. Lastly, our study indicates that strained purée should be preferred over rustic purée
- …