30 research outputs found

    Enhancement of Rural Connectivity by Recycling TV Towers with Massive MIMO Techniques

    Full text link
    Nowadays, the digital divide is one of the major issues facing the global community. Around 3 billion people worldwide are still not-connected or under-connected. In this article, we investigate the use of TV towers with multi user (MU) massive multiple input multiple output (mMIMO) techniques to offer connectivity in rural areas. Specifically, the coverage range is assessed for a MU mMIMO base station (BS) mounted on a high tower as a TV tower, and compared with a legacy mMIMO BS. The obtained results show that one high tower BS can cover an area at least 25 times larger than the area covered by a legacy BS. This is of high interest as recycling TV towers can enhance the rural connectivity with low expenditures. We apply the proposed solution to a realistic case study in an Ethiopian rural area, based on population densities and locations of current BS and TV towers. Our study shows that a high number of people can be covered by existing TV towers. Additional possible solutions to enhance rural connectivity are discussed in the last section.Comment: 7 pages, submitted to IEEE Communications Magazine (June 2022), 1st revision (October 2022), 2nd revision (November 2022

    Reconfigurable Intelligent Surface Assisted Railway Communications: A survey

    Full text link
    The number of train passengers and the demand for high data rates to handle new technologies such as video streaming and IoT technologies are continuously increasing. Therefore the exploration of millimeter waves (mmWave) band is a key technology to meet this demand. However, the high penetration loss makes mmWave very sensitive to blocking, limiting its coverage area. One promising, efficient, and low-cost solution is the reconfigurable intelligent surface (RIS). This paper reviews the state of the art of RIS for railway communications in the mmWave context. First, we present the different types of RIS and review some optimization algorithms used in the literature to find the RIS phase shift. Then, we review recent works on RIS in the railway domain and provide future directions

    Design of adaptive 2x2 space-time block codes for broadcasting applications

    No full text
    International audienceFuture broadcasting systems will call for multi-antenna (MIMO) transmission techniques. Space-time block codes (STBC) are conventionally designed according to rank-determinant criteria, efficient at high signal-to-noise ratios (SNR). However, broadcasting transmissions are protected by powerful forward error correcting (FEC) codes able to operate at low to moderate SNRs. The aim of this study is to design full-rate full-diversity STBCs with low detection complexity, optimized for a wide range of SNRs

    Analyse et conception de code espace-temps en blocs pour transmissions MIMO codées

    No full text
    Most of the modern wireless communication systems as WiMAX, DVB-NGH, WiFi, HSPA+ and 4G have adopted the use of multiple antennas at the transmitter and the receiver, called multiple-input multiple-output (MIMO). Space time coding for MIMO systems is a promising technology to increase the data rate and enhance the reliability of wireless communications. Space-time block codes (STBCs) are commonly designed according to the rank-determinant criteria suitable at high signal to noise ratios (SNRs). In contrast, wireless communication standards employ MIMO technology with capacity-approaching forward-error correcting (FEC) codes like turbo codes and low-density parity-check (LDPC) codes, ensuring low error rates even at low SNRs. In this thesis, we investigate the design of STBCs for MIMO systems with capacity-approaching FEC codes. We start by proposing a non-asymptotic STBC design criterion based on the bitwise mutual information (BMI) maximization between transmitted and soft estimated bits at a specific target SNR. According to the BMI criterion, we optimize several conventional STBCs. Their design parameters are shown to be SNR-dependent leading to the proposal of adaptive STBCs. Proposed adaptive STBCs offer identical or better performance than standard WiMAX profiles for all coding rates, without increasing the detection complexity. Among them, the proposed adaptive trace-orthonormal STBC can pass continuously from spatial multiplexing, suitable at low SNRs and therefore at low coding rates, to the Golden code, optimal at high SNRs. Uncorrelated, correlated channels and transmit antenna selection are considered. We design adaptive STBCs for these cases offering identical or better performance than conventional non-adaptive STBCs. In addition, conventional STBCs are designed in a way achieving the asymptotic DMT frontier. Recently, the finite-SNR DMT has been proposed to characterize the DMT at finite SNRs. Our last contribution consists of the derivation of the exact finite-SNR DMT for MIMO channels with dual antennas at the transmitter and/or the receiver. Both uncorrelated and correlated Rayleigh fading channels are considered. It is shown that at realistic SNRs, achievable diversity gains are significantly lower than asymptotic values. This finite-SNR could provide new insights on the design of STBCs at operational SNRs.Les systèmes de communication modernes sans fil tels que WiMAX, DVB, WiFi, HSPA+ et 4G ont adopté l'utilisation de plusieurs antennes en émission et en réception. Pour ces systèmes dits Multiple-Input Multiple-Output (MIMO), le codage espace-temps en blocs ou Space Time Block Codes (STBCs) est une technologie prometteuse permettant d'augmenter le débit et la fiabilité des communications sans fil. Les STBCs sont souvent conçus selon des critères asymptotiques, appropriés pour les rapports signal-à-bruit (RSB) élevés. En revanche, les standards définissent l'utilisation du codage MIMO en association avec un codage correcteur d'erreur puissant ou Forward Error Correcting (FEC) comme un turbo code ou un code Low-Density Parity-Check (LDPC) garantissant de faibles taux d'erreurs même pour de faibles RSBs. Dans cette thèse, nous étudions la construction des STBCs pour les systèmes MIMO utilisant un FEC puissant. Dans un premier temps, nous proposons un critère de construction non asymptotique des STBCs, basé sur la maximisation de l'information mutuelle entre les bits émis et reçus, dite Bitwise Mutual Information (BMI). Selon ce critère d'information mutuelle, nous optimisons plusieurs STBCs. Ensuite, nous proposons des STBCs adaptatifs grâce à l'optimisation de leurs paramètres selon le RSB. Les codes proposés conduisent à des performances identiques ou meilleures que les codes du standard WiMAX pour tous les rendements de codage FEC, sans pour autant augmenter la complexité de détection. Parmi eux, le code trace-orthonormal adaptatif proposé permet de passer de manière continue du multiplexage spatial, adapté pour les faibles RSBs et donc pour les rendements de codage faibles, au code d'or, optimal à fort RSB. Les canaux non corrélés, corrélés et une sélection d'antennes à l'émission sont considérés. Nous montrons qu'il est possible de construire des codes STBC adaptatifs également pour ces cas de figure et qu'ils présentent des performances identiques ou meilleures que les codes non adaptatifs. De surcroît, les STBCs classiques sont construits de manière à atteindre la frontière asymptotique du compromis diversité-gain de multiplexage ou Diversity-Multiplexing Tradeoff (DMT). Récemment, un DMT dépendant du RSB ou finite-SNR DMT a été proposé visant à caractériser le DMT selon le RSB. Notre dernière contribution consiste à dériver l'expression exacte du DMT à RSB fini pour les systèmes MIMO ayant deux antennes en émission et/ou en réception. Les canaux de Rayleigh non corrélés et corrélés sont considérés. Pour les RSB opérationnels, nous montrons que les gains de diversité atteints sont largement inférieurs aux valeurs asymptotiques. Ce DMT peut s'avérer être un nouvel outil de grande utilité pour construire des STBCs efficaces pour différentes valeurs de RSBs opérationnels

    Analysis and design of space-time block codes for coded MIMO transmissions

    No full text
    Les systèmes de communication modernes sans fil tels que WiMAX, DVB, WiFi, HSPA+ et 4G ont adopté l'utilisation de plusieurs antennes en émission et en réception. Pour ces systèmes dits Multiple-Input Multiple-Output (MIMO), le codage espace-temps en blocs ou Space Time Block Codes (STBCs) est une technologie prometteuse permettant d'augmenter le débit et la fiabilité des communications sans fil. Les STBCs sont souvent conçus selon des critères asymptotiques, appropriés pour les rapports signal-à-bruit (RSB) élevés. En revanche, les standards définissent l'utilisation du codage MIMO en association avec un codage correcteur d'erreur puissant ou Forward Error Correcting (FEC) comme un turbo code ou un code Low-Density Parity-Check (LDPC) garantissant de faibles taux d'erreurs même pour de faibles RSBs. Dans cette thèse, nous étudions la construction des STBCs pour les systèmes MIMO utilisant un FEC puissant. Dans un premier temps, nous proposons un critère de construction non asymptotique des STBCs, basé sur la maximisation de l'information mutuelle entre les bits émis et reçus, dite Bitwise Mutual Information (BMI). Selon ce critère d'information mutuelle, nous optimisons plusieurs STBCs. Ensuite, nous proposons des STBCs adaptatifs grâce à l'optimisation de leurs paramètres selon le RSB. Les codes proposés conduisent à des performances identiques ou meilleures que les codes du standard WiMAX pour tous les rendements de codage FEC, sans pour autant augmenter la complexité de détection. Parmi eux, le code trace-orthonormal adaptatif proposé permet de passer de manière continue du multiplexage spatial, adapté pour les faibles RSBs et donc pour les rendements de codage faibles, au code d'or, optimal à fort RSB. Les canaux non corrélés, corrélés et une sélection d'antennes à l'émission sont considérés. Nous montrons qu'il est possible de construire des codes STBC adaptatifs également pour ces cas de figure et qu'ils présentent des performances identiques ou meilleures que les codes non adaptatifs. De surcroît, les STBCs classiques sont construits de manière à atteindre la frontière asymptotique du compromis diversité-gain de multiplexage ou Diversity-Multiplexing Tradeoff (DMT). Récemment, un DMT dépendant du RSB ou finite-SNR DMT a été proposé visant à caractériser le DMT selon le RSB. Notre dernière contribution consiste à dériver l'expression exacte du DMT à RSB fini pour les systèmes MIMO ayant deux antennes en émission et/ou en réception. Les canaux de Rayleigh non corrélés et corrélés sont considérés. Pour les RSB opérationnels, nous montrons que les gains de diversité atteints sont largement inférieurs aux valeurs asymptotiques. Ce DMT peut s'avérer être un nouvel outil de grande utilité pour construire des STBCs efficaces pour différentes valeurs de RSBs opérationnels.Most of the modern wireless communication systems as WiMAX, DVB-NGH, WiFi, HSPA+ and 4G have adopted the use of multiple antennas at the transmitter and the receiver, called multiple-input multiple-output (MIMO). Space time coding for MIMO systems is a promising technology to increase the data rate and enhance the reliability of wireless communications. Space-time block codes (STBCs) are commonly designed according to the rank-determinant criteria suitable at high signal to noise ratios (SNRs). In contrast, wireless communication standards employ MIMO technology with capacity-approaching forward-error correcting (FEC) codes like turbo codes and low-density parity-check (LDPC) codes, ensuring low error rates even at low SNRs. In this thesis, we investigate the design of STBCs for MIMO systems with capacity-approaching FEC codes. We start by proposing a non-asymptotic STBC design criterion based on the bitwise mutual information (BMI) maximization between transmitted and soft estimated bits at a specific target SNR. According to the BMI criterion, we optimize several conventional STBCs. Their design parameters are shown to be SNR-dependent leading to the proposal of adaptive STBCs. Proposed adaptive STBCs offer identical or better performance than standard WiMAX profiles for all coding rates, without increasing the detection complexity. Among them, the proposed adaptive trace-orthonormal STBC can pass continuously from spatial multiplexing, suitable at low SNRs and therefore at low coding rates, to the Golden code, optimal at high SNRs. Uncorrelated, correlated channels and transmit antenna selection are considered. We design adaptive STBCs for these cases offering identical or better performance than conventional non-adaptive STBCs. In addition, conventional STBCs are designed in a way achieving the asymptotic DMT frontier. Recently, the finite-SNR DMT has been proposed to characterize the DMT at finite SNRs. Our last contribution consists of the derivation of the exact finite-SNR DMT for MIMO channels with dual antennas at the transmitter and/or the receiver. Both uncorrelated and correlated Rayleigh fading channels are considered. It is shown that at realistic SNRs, achievable diversity gains are significantly lower than asymptotic values. This finite-SNR could provide new insights on the design of STBCs at operational SNRs.CESSON SEVIGNE-Télécom Breta (350512301) / SudocSudocFranceF

    On Enhancing the Reliability of Key Extraction Mechanisms from Wireless Channels

    No full text
    International audienceWe investigate applying an error correcting code of small block size to enhance the performance of key generation from wireless channels. A trade-off between performance and secrecy is then studied. Preliminary results show that using a simple lower quantization approach achieves better performance than applying a small block size BCH code

    On the design of coded MIMO systems

    No full text
    International audienceIn this paper, we investigate two approaches which deal with the construction of space-time block (STB) codes for a system possessing a forward error correcting (FEC) code at the transmitter side. The first approach designs the STB codes to be optimal for a system equipped by a turbo MMSE equalizer at the receiver side, with a minimum peak to average power ratio (PAPR) constraint. The second one proposes to design the STB codes according to a non-asymptotic design criterion based on the bitwise mutual information (BMI) maximization at a specific target SNR. Performance assessments of designed codes are validated by Monte Carlo simulations

    Precoded Wake-Up Radio Signals in Multiple-Input Multiple-Output Cellular Networks

    No full text
    International audienceInternet of things (IoT) presupposes a massive number of low-complexity wireless devices, placed in hardly accessible locations and often powered by batteries with limited size and capacity. To extend the lifetime of these devices, wakeup radio (WuR) techniques were proposed. In the literature, WuR solutions have been evaluated with single-antenna base stations (BSs). In this paper, we evaluate the benefits of adding multiple antennas at BSs to transmit precoded WuR signals. The considered precoded schemes provide better spatial selectivity by focusing the power of the transmitted WuR signal on the targeted devices. Monte-Carlo simulations are used to assess the performance of the system in terms of successful wake-up probability of the WuR receiver. Numerical results show that, unlike data transmission scenarios, complex precoders as multicell minimum mean-squared error (M-MMSE), are surpassed by the simpler maximum ratio (MR) precoder for WuR. Index Terms-Wake-up radio (WuR), precoding, multipleinput multiple-output (MIMO), cellular networks
    corecore