9 research outputs found

    Batch Emulsion Polymerization of Vinyl Chloride: Application of Experimental Design to Investigate the Effects of Operating Variables on Particle Size and Particle Size Distribution

    Get PDF
    ABSTRACT: In this article, the influences of operating variables on the particle size (PS) and particle size distribution (PSD) of emulsion poly(vinyl chloride) in batch reactor were investigated using Taguchi experimental design approach. The variables were temperature (T), water to monomer weight ratio (R), concentrations of initiator ([I]) and emulsifier ([E]), and agitation speed (S). Scanning electron microscope was used together with image analysis software to determine the PS and PSD. Statistical analysis of results revealed that the PS of emulsion poly(vinyl chloride) strongly depends on emulsifier and initiator concentrations, respectively, whereas the other factors have no significant effects in the range of levels investigated in this study. Except initiator concentration, all factors have important influence on the PSD (significance sequence: . It is implied from the greater influence of agitation speed relative to temperature on PSD that the shear coagulation predominates the Brownian coagulation in this system. The relative optimum condition for a typical paste application was also determined using overall evaluation criteria

    Batch Emulsion Polymerization of Vinyl Chloride: Application of Experimental Design to Investigate the Effects of Operating Variables on Particle Size and Particle Size Distribution

    Get PDF
    ABSTRACT: In this article, the influences of operating variables on the particle size (PS) and particle size distribution (PSD) of emulsion poly(vinyl chloride) in batch reactor were investigated using Taguchi experimental design approach. The variables were temperature (T), water to monomer weight ratio (R), concentrations of initiator ([I]) and emulsifier ([E]), and agitation speed (S). Scanning electron microscope was used together with image analysis software to determine the PS and PSD. Statistical analysis of results revealed that the PS of emulsion poly(vinyl chloride) strongly depends on emulsifier and initiator concentrations, respectively, whereas the other factors have no significant effects in the range of levels investigated in this study. Except initiator concentration, all factors have important influence on the PSD (significance sequence: . It is implied from the greater influence of agitation speed relative to temperature on PSD that the shear coagulation predominates the Brownian coagulation in this system. The relative optimum condition for a typical paste application was also determined using overall evaluation criteria

    Material encapsulation in poly(methyl methacrylate) shell: A review

    Get PDF
    Material encapsulation is a relatively new technique for coating a micro/nanosize particle or droplet with polymeric or inorganic shell. Encapsulation technology has many applications in various fields including drug delivery, cosmetic, agriculture, thermal energy storage, textile, and self-healing polymers. Poly(methyl methacrylate) (PMMA) is widely used as shell material in encapsulation due to its high chemical stability, biocompatibility, nontoxicity, and good mechanical properties. The main approach for micro/nanoencapsulation of materials using PMMA as shell comprises emulsion-based techniques such as emulsion polymerization and solvent evaporation from oil-in-water emulsion. In the present review, we first focus on the encapsulation techniques of liquid materials with PMMA shell by analyzing the effective processing parameters influencing the preparation of PMMA micro/nanocapsules. We then describe the morphology of PMMA capsules in emulsion systems according to thermodynamic relations. The techniques to investigation of mechanical properties of capsule shell and the release mechanisms of core material from PMMA capsules were also investigated. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 48039

    Micromechanical assessment of PMMA microcapsules containing epoxy and mercaptan as self-healing agents

    Get PDF
    Mechanical properties of microcapsule shell have great influence on microcapsule suitability as a mechanical trigger in a self-healing composite. The elastic modulus and hardness of polymethyl methacrylate (PMMA) microcapsules containing epoxy prepolymer (EC 157) and pentaerythritol tetrakis (3-mercaptopropionate) (PETMP) as healing agents were investigated using nanoindentation technique. The influence of the PMMA average molecular weight (M-W), the kind of core material, and the mechanical mixing rate on the mechanical properties of the microcapsule shell were studied using the Taguchi experimental design approach. The results indicated that the most important factors which affect the elastic modulus and the hardness of microcapsules shell are the M-W of PMMA and the kind of core material. The average elastic modulus of PMMA shell of epoxy and mercaptan-loaded microcapsules was found between 2.386 and 3.495 GPa. The hardness of PMMA shell of healing agent microcapsules was obtained in the range of 0.064-0.219 GPa. This constitutes essential knowledge in order to design capsules with tailored properties for self-healing materials

    Development of self-healing epoxy composites via incorporation of microencapsulated epoxy and mercaptan in poly(methyl methacrylate) shell

    Get PDF
    Self-healing composites based on epoxy resin containing poly(methyl methacrylate) (PMMA) microcapsules filled with healing agents were prepared. The effect of healing agents microcapsules on mechanical properties and self-healing behavior of epoxy composites were investigated in this work. Epoxy and mercaptan as curing agent were microencapsulated in PMMA shell as two-component healing agent through internal phase separation method, and then, epoxy composites containing 2.5, 5, 7.5 and 10 wt% of healing agent microcapsules were prepared. The fracture toughness and healing efficiency of these composites were measured using a tapered double cantilever beam (TDCB) specimen. The results indicated that about 80% healing efficiency was achieved with 10 wt% PMMA microcapsules at room temperature after 24 h. The tensile strength of the epoxy with 2.5 wt % PMMA microcapsules increased initially and then decreased gradually with increasing microcapsules content up to 10 wt% PMMA microcapsules. DSC results also indicated that this system has good potential for spontaneous self-healing performance at room temperature
    corecore