7 research outputs found

    Valorization of Kraft Lignin by Fractionation and Chemical Modifications for Different Applications

    No full text
    Abstract Lignin is one of the most abundant biopolymers. Approximately 70 million tons of technical lignin is generated annually, but only little is used for products other than energy. The complexity of lignin hinders full utilization in high-value products and materials. In spite of the large recent progress of knowledge of lignin structure and biosynthesis, much is still not fully understood, including structural inhomogeneity. We made synthetic lignin at different pH’s and obtained structural differences that might explain the structural inhomogeneity of lignin. Technical lignins from the chemical pulping are available in large scale, but the processes result in alterations, such as oxidation and condensation. Therefore, to utilize technical lignin, modifications, such as fractionation and/or chemical modifications are necessary. Fractionation with ceramic membranes is one way to lower the polydispersity of lignin. The main advantage is their tolerance towards high temperature and harsh conditions. We demonstrated that low Mw lignin was extracted from industrially produced LignoBoost lignin aiming: i) to investigate the performance of the membrane over time; ii) to analyze the antioxidant properties of the low Mw lignin. Chemical modification can also improve the properties of lignin. By adding moieties, different properties can be obtained. Amination and methacrylation of kraft lignin were performed, as well as lignin-silica hybrid materials with potential for the adsorption were produced and investigated. Non-modified and methacrylated lignin were used to synthesize lignin-St-DVB porous microspheres to be utilized as a sorbent for organic pollutants. The possibility to substitute styrene with methacrylated lignin was evaluated, demonstrating that interaction between lignin and DVB, and porosity increased. Lignin has certain antibacterial properties. Un-modified and modified (aminated) lignin samples and sphere nanoparticles of lignin were tested for their effect against gram-positive and gram-negative bacteria’s and an injectable hydrogel was developed with encapsulated lignin for being used as an injectable gel for the open wounds. Results demonstrated promising antibacterial efficiency of lignins against gram-positive, more especially better inhibition with aminated lignins against gram-positive and negative bacterium.    SAMMANFATTNING Lignin Ă€r en av de mest förkommande biopolymererna och ca 70 miljoner ton av tekniskt lignin produceras Ă„rligen, men endast en mindre del anvĂ€nds till andra applikationer Ă€n energiproduktion. Ett hinder för anvĂ€ndning av lignin i mer komplexa produkter och material Ă€r dess komplexa struktur. Trotts senare Ă„rs stora framsteg nĂ€r det gĂ€ller kunskap om ligninets struktur, Ă€r mycket alltjĂ€mt dĂ„ligt förstĂ„tt, exempelvis angĂ„ende den strukturella inhomogeniteten hos lignin. Vi har studerat detta genom att göra syntetiskt lignin vid olika pH, och erhöll strukturella skillnader som kan vara en förklaring till den strukturella inhomogeniteten. Tekniska ligniner frĂ„n kemisk massatillverkning Ă€r tillgĂ€ngliga i stor skala, men processerna resulterar i strukturella modifieringar hos ligninet, sĂ„som oxidationer och kondensationer. DĂ€rför Ă€r fraktionering och modifiering av tekniskt lignin lĂ€mpligt. Fraktionering med hjĂ€lp av keramiska membran Ă€r ett sĂ€tt att minska polydisperiteten hos lignin. Den största fördelen Ă€r membranens stora tolerans mot höga temperatur och aggressiva kemikalier. Vi anvĂ€nde filtrering pĂ„ keramiska membran för att framstĂ€lla lĂ„gmolekylĂ€rt lignin frĂ„n den industriella kvaliteten LignoBoost, för att utvĂ€rdera membranens prestanda över tid, och analysera antioxidantegenskaperna hos det lĂ„gmolekylĂ€ra ligninet. Kemisk modifiering kan ocksĂ„ anvĂ€ndas för att förbĂ€ttra egenskaperna hos lignin. Genom att koppla pĂ„ grupper, kan egenskaperna Ă€ndras. Amidering och metakrylering av sulfatlignin utfördes liksom tillverkning av lignin-silikon-hybridmaterial, med potential för adsorption, och materialen undersöktes. Omodifierat och metakrylerat lignin anvĂ€ndes tillsammans med styren för att syntetisera porösa mikrosfĂ€rer som testades som absorbent för organiska föroreningar. UtvĂ€rdering visade att metakrylering ökade interaktionen mellan lignin och polystyren och ökade porositeten. Lignin har viss antimikrobiell aktivitet. Omodifierade och amiderade ligninprover och sfĂ€riska nanopartiklar av lignin testades för sin verkan mot gram-positiva och gram-negativa bakterier. Resultaten visade lovande resultat för antimikrobiell aktivitet, och sĂ€rskilt för amiderade ligniner nĂ€r det gĂ€ller grampositiva bakterier. En injicerbar hydrogel med inkapslat lignin utvecklades ocksĂ„ för behandling av öppna sĂ„r.    QC 20181122</p

    Valorization of Kraft Lignin by Fractionation and Chemical Modifications for Different Applications

    No full text
    Abstract Lignin is one of the most abundant biopolymers. Approximately 70 million tons of technical lignin is generated annually, but only little is used for products other than energy. The complexity of lignin hinders full utilization in high-value products and materials. In spite of the large recent progress of knowledge of lignin structure and biosynthesis, much is still not fully understood, including structural inhomogeneity. We made synthetic lignin at different pH’s and obtained structural differences that might explain the structural inhomogeneity of lignin. Technical lignins from the chemical pulping are available in large scale, but the processes result in alterations, such as oxidation and condensation. Therefore, to utilize technical lignin, modifications, such as fractionation and/or chemical modifications are necessary. Fractionation with ceramic membranes is one way to lower the polydispersity of lignin. The main advantage is their tolerance towards high temperature and harsh conditions. We demonstrated that low Mw lignin was extracted from industrially produced LignoBoost lignin aiming: i) to investigate the performance of the membrane over time; ii) to analyze the antioxidant properties of the low Mw lignin. Chemical modification can also improve the properties of lignin. By adding moieties, different properties can be obtained. Amination and methacrylation of kraft lignin were performed, as well as lignin-silica hybrid materials with potential for the adsorption were produced and investigated. Non-modified and methacrylated lignin were used to synthesize lignin-St-DVB porous microspheres to be utilized as a sorbent for organic pollutants. The possibility to substitute styrene with methacrylated lignin was evaluated, demonstrating that interaction between lignin and DVB, and porosity increased. Lignin has certain antibacterial properties. Un-modified and modified (aminated) lignin samples and sphere nanoparticles of lignin were tested for their effect against gram-positive and gram-negative bacteria’s and an injectable hydrogel was developed with encapsulated lignin for being used as an injectable gel for the open wounds. Results demonstrated promising antibacterial efficiency of lignins against gram-positive, more especially better inhibition with aminated lignins against gram-positive and negative bacterium.    SAMMANFATTNING Lignin Ă€r en av de mest förkommande biopolymererna och ca 70 miljoner ton av tekniskt lignin produceras Ă„rligen, men endast en mindre del anvĂ€nds till andra applikationer Ă€n energiproduktion. Ett hinder för anvĂ€ndning av lignin i mer komplexa produkter och material Ă€r dess komplexa struktur. Trotts senare Ă„rs stora framsteg nĂ€r det gĂ€ller kunskap om ligninets struktur, Ă€r mycket alltjĂ€mt dĂ„ligt förstĂ„tt, exempelvis angĂ„ende den strukturella inhomogeniteten hos lignin. Vi har studerat detta genom att göra syntetiskt lignin vid olika pH, och erhöll strukturella skillnader som kan vara en förklaring till den strukturella inhomogeniteten. Tekniska ligniner frĂ„n kemisk massatillverkning Ă€r tillgĂ€ngliga i stor skala, men processerna resulterar i strukturella modifieringar hos ligninet, sĂ„som oxidationer och kondensationer. DĂ€rför Ă€r fraktionering och modifiering av tekniskt lignin lĂ€mpligt. Fraktionering med hjĂ€lp av keramiska membran Ă€r ett sĂ€tt att minska polydisperiteten hos lignin. Den största fördelen Ă€r membranens stora tolerans mot höga temperatur och aggressiva kemikalier. Vi anvĂ€nde filtrering pĂ„ keramiska membran för att framstĂ€lla lĂ„gmolekylĂ€rt lignin frĂ„n den industriella kvaliteten LignoBoost, för att utvĂ€rdera membranens prestanda över tid, och analysera antioxidantegenskaperna hos det lĂ„gmolekylĂ€ra ligninet. Kemisk modifiering kan ocksĂ„ anvĂ€ndas för att förbĂ€ttra egenskaperna hos lignin. Genom att koppla pĂ„ grupper, kan egenskaperna Ă€ndras. Amidering och metakrylering av sulfatlignin utfördes liksom tillverkning av lignin-silikon-hybridmaterial, med potential för adsorption, och materialen undersöktes. Omodifierat och metakrylerat lignin anvĂ€ndes tillsammans med styren för att syntetisera porösa mikrosfĂ€rer som testades som absorbent för organiska föroreningar. UtvĂ€rdering visade att metakrylering ökade interaktionen mellan lignin och polystyren och ökade porositeten. Lignin har viss antimikrobiell aktivitet. Omodifierade och amiderade ligninprover och sfĂ€riska nanopartiklar av lignin testades för sin verkan mot gram-positiva och gram-negativa bakterier. Resultaten visade lovande resultat för antimikrobiell aktivitet, och sĂ€rskilt för amiderade ligniner nĂ€r det gĂ€ller grampositiva bakterier. En injicerbar hydrogel med inkapslat lignin utvecklades ocksĂ„ för behandling av öppna sĂ„r.    QC 20181122</p

    Valorization of Kraft Lignin by Fractionation and Chemical Modifications for Different Applications

    No full text
    Abstract Lignin is one of the most abundant biopolymers. Approximately 70 million tons of technical lignin is generated annually, but only little is used for products other than energy. The complexity of lignin hinders full utilization in high-value products and materials. In spite of the large recent progress of knowledge of lignin structure and biosynthesis, much is still not fully understood, including structural inhomogeneity. We made synthetic lignin at different pH’s and obtained structural differences that might explain the structural inhomogeneity of lignin. Technical lignins from the chemical pulping are available in large scale, but the processes result in alterations, such as oxidation and condensation. Therefore, to utilize technical lignin, modifications, such as fractionation and/or chemical modifications are necessary. Fractionation with ceramic membranes is one way to lower the polydispersity of lignin. The main advantage is their tolerance towards high temperature and harsh conditions. We demonstrated that low Mw lignin was extracted from industrially produced LignoBoost lignin aiming: i) to investigate the performance of the membrane over time; ii) to analyze the antioxidant properties of the low Mw lignin. Chemical modification can also improve the properties of lignin. By adding moieties, different properties can be obtained. Amination and methacrylation of kraft lignin were performed, as well as lignin-silica hybrid materials with potential for the adsorption were produced and investigated. Non-modified and methacrylated lignin were used to synthesize lignin-St-DVB porous microspheres to be utilized as a sorbent for organic pollutants. The possibility to substitute styrene with methacrylated lignin was evaluated, demonstrating that interaction between lignin and DVB, and porosity increased. Lignin has certain antibacterial properties. Un-modified and modified (aminated) lignin samples and sphere nanoparticles of lignin were tested for their effect against gram-positive and gram-negative bacteria’s and an injectable hydrogel was developed with encapsulated lignin for being used as an injectable gel for the open wounds. Results demonstrated promising antibacterial efficiency of lignins against gram-positive, more especially better inhibition with aminated lignins against gram-positive and negative bacterium.    SAMMANFATTNING Lignin Ă€r en av de mest förkommande biopolymererna och ca 70 miljoner ton av tekniskt lignin produceras Ă„rligen, men endast en mindre del anvĂ€nds till andra applikationer Ă€n energiproduktion. Ett hinder för anvĂ€ndning av lignin i mer komplexa produkter och material Ă€r dess komplexa struktur. Trotts senare Ă„rs stora framsteg nĂ€r det gĂ€ller kunskap om ligninets struktur, Ă€r mycket alltjĂ€mt dĂ„ligt förstĂ„tt, exempelvis angĂ„ende den strukturella inhomogeniteten hos lignin. Vi har studerat detta genom att göra syntetiskt lignin vid olika pH, och erhöll strukturella skillnader som kan vara en förklaring till den strukturella inhomogeniteten. Tekniska ligniner frĂ„n kemisk massatillverkning Ă€r tillgĂ€ngliga i stor skala, men processerna resulterar i strukturella modifieringar hos ligninet, sĂ„som oxidationer och kondensationer. DĂ€rför Ă€r fraktionering och modifiering av tekniskt lignin lĂ€mpligt. Fraktionering med hjĂ€lp av keramiska membran Ă€r ett sĂ€tt att minska polydisperiteten hos lignin. Den största fördelen Ă€r membranens stora tolerans mot höga temperatur och aggressiva kemikalier. Vi anvĂ€nde filtrering pĂ„ keramiska membran för att framstĂ€lla lĂ„gmolekylĂ€rt lignin frĂ„n den industriella kvaliteten LignoBoost, för att utvĂ€rdera membranens prestanda över tid, och analysera antioxidantegenskaperna hos det lĂ„gmolekylĂ€ra ligninet. Kemisk modifiering kan ocksĂ„ anvĂ€ndas för att förbĂ€ttra egenskaperna hos lignin. Genom att koppla pĂ„ grupper, kan egenskaperna Ă€ndras. Amidering och metakrylering av sulfatlignin utfördes liksom tillverkning av lignin-silikon-hybridmaterial, med potential för adsorption, och materialen undersöktes. Omodifierat och metakrylerat lignin anvĂ€ndes tillsammans med styren för att syntetisera porösa mikrosfĂ€rer som testades som absorbent för organiska föroreningar. UtvĂ€rdering visade att metakrylering ökade interaktionen mellan lignin och polystyren och ökade porositeten. Lignin har viss antimikrobiell aktivitet. Omodifierade och amiderade ligninprover och sfĂ€riska nanopartiklar av lignin testades för sin verkan mot gram-positiva och gram-negativa bakterier. Resultaten visade lovande resultat för antimikrobiell aktivitet, och sĂ€rskilt för amiderade ligniner nĂ€r det gĂ€ller grampositiva bakterier. En injicerbar hydrogel med inkapslat lignin utvecklades ocksĂ„ för behandling av öppna sĂ„r.    QC 20181122</p

    Synthesis of low bandgap conjugated organic materials for organic solar cell

    No full text

    Membrane filtration of kraft lignin: Structural charactristics and antioxidant activity of the low-molecular-weight fraction

    No full text
    Lignin, which is the second most abundant biomass component and has carbon-rich phenolic content, is a promising renewable raw material for multiple applications, such as carbon fibers, adhesives, and emulsifiers. To use lignin efficiently, it is important to ensure its purity and homogeneity. As a result, the separation of lignin into fractions with high purity and narrow molecular-weight distributions is likely a prerequisite for several applications. Ultrafiltration using ceramic membranes has many advantages, including enabling direct lignin extraction from Kraft pulp cooking liquors without pH and temperature adjustment. One challenge with membrane filtration using such a system is the potential for reduced membrane performance over time, which is associated with fouling. In this study, LignoBoost Kraft lignin was fractionated using a ceramic membrane with a molecular weight cut-off of 1 kDa. The separation behavior during ultrafiltration fractionation was investigated and the antioxidant properties of the recovered low-molecular-weight (low-MW) lignin samples were evaluated. Using this model system, the permeate fluxes were unstable during the 100 h of membrane operation. However, a decrease in the average MW in the permeate over time was observed. The shift in MW was most pronounced for virgin membranes, while a more stable MW distribution was evident for membranes subjected to multiple cleaning cycles. According to 2D NMR analysis, low-MW lignin that was recovered after 100 h of operation, consisted of smaller lignin fragments, such as dimers and oligomers, with a high content of methoxy-groups. This was confirmed using the size exclusion chromatography method, which indicated an weigh average molecular weight in the range of 450–500 Da. 31P NMR spectroscopy showed that, despite the lower total content of phenolic OH groups, the low-MW sample had a higher proportion of non-condensed phenolic OH groups. The results of the antioxidant tests demonstrated the strong potential of lignin and its low-MW fraction as a natural antioxidant, particularly for lipid-containing systems. The low-MW lignin fraction showed better antioxidant activity than the non-fractionated LignoBoost lignin in the kinetic oxygen radical absorbance capacity (ORAC) test and demonstrated three-fold stronger inhibition of the substrate (fluorescein) than the reference antioxidant Trolox (a water-soluble derivative of vitamin E)

    Utilizing native lignin as redox-active material in conductive wood for electronic and energy storage applications

    No full text
    Nanostructured wood veneer with added electroactive functionality combines structural and functional properties into eco-friendly, low-cost nanocomposites for electronics and energy technologies. Here, we report novel conducting polymer-impregnated wood veneer electrodes where the native lignin is preserved, but functionalized for redox activity and used as an active component. The resulting electrodes display a well-preserved structure, redox activity, and high conductivity. Wood samples were sodium sulfite-treated under neutral conditions at 165 degrees C, followed by the tailored distribution of PEDOT:PSS, not previously used for this purpose. The mild sulfite process introduces sulfonic acid groups inside the nanostructured cell wall, facilitating electrostatic interaction on a molecular level between the residual lignin and PEDOT. The electrodes exhibit a conductivity of up to 203 S m(-1) and a specific pseudo-capacitance of up to 38 mF cm(-2), with a capacitive contribution from PEDOT:PSS and a faradaic component originating from lignin. We also demonstrate an asymmetric wood pseudo-capacitor reaching a specific capacitance of 22.9 mF cm(-2) at 1.2 mA cm(-2) current density. This new wood composite design and preparation scheme will support the development of wood-based materials for use in electronics and energy storage.Funding Agencies|Wallenberg Wood Science Center (Knut and Alice Wallenberg Foundation); Karl-Erik Onnesjo Foundation; Treesearch, a collaboration platform for Swedish forest industrial research</p
    corecore