1,324 research outputs found
Networked volunteering during the 2013 Sardinian floods
The article describes how ordinary citizens used Twitter as an emergency-management tool during the heavy floods that occurred in Sardinia, Italy, in November 2013. The case study constitutes an example of digital volunteering in the aftermath of a disaster event. The article applies the connective action framework (Bennet & Segerberg, 2012) for a deeper understanding of the dynamics of self-organized disaster communication activities on social media. Utilizing a dataset of 93,091 tweets that used the hashtag #allertameteoSAR (weather alert in Sardinia), the analysis focuses on: 1) the roles and patterns of influence among the main actors; and 2) the strategies for a peer ‘curation’ and sharing of a disaster-recovery oriented communication. The article highlights the role of Twitter celebrities and engaged ordinary users as digital volunteers and explains how they succeeded in activating bottom-up disaster-relief oriented communication
Exploring the ferromagnetic behaviour of a repulsive Fermi gas via spin dynamics
Ferromagnetism is a manifestation of strong repulsive interactions between
itinerant fermions in condensed matter. Whether short-ranged repulsion alone is
sufficient to stabilize ferromagnetic correlations in the absence of other
effects, like peculiar band dispersions or orbital couplings, is however
unclear. Here, we investigate ferromagnetism in the minimal framework of an
ultracold Fermi gas with short-range repulsive interactions tuned via a
Feshbach resonance. While fermion pairing characterises the ground state, our
experiments provide signatures suggestive of a metastable Stoner-like
ferromagnetic phase supported by strong repulsion in excited scattering states.
We probe the collective spin response of a two-spin mixture engineered in a
magnetic domain-wall-like configuration, and reveal a substantial increase of
spin susceptibility while approaching a critical repulsion strength. Beyond
this value, we observe the emergence of a time-window of domain immiscibility,
indicating the metastability of the initial ferromagnetic state. Our findings
establish an important connection between dynamical and equilibrium properties
of strongly-correlated Fermi gases, pointing to the existence of a
ferromagnetic instability.Comment: 8 + 17 pages, 4 + 8 figures, 44 + 19 reference
Connecting dissipation and phase slips in a Josephson junction between fermionic superfluids
We study the emergence of dissipation in an atomic Josephson junction between
weakly-coupled superfluid Fermi gases. We find that vortex-induced phase
slippage is the dominant microscopic source of dissipation across the BEC-BCS
crossover. We explore different dynamical regimes by tuning the bias chemical
potential between the two superfluid reservoirs. For small excitations, we
observe dissipation and phase coherence to coexist, with a resistive current
followed by well-defined Josephson oscillations. We link the junction transport
properties to the phase-slippage mechanism, finding that vortex nucleation is
primarily responsible for the observed trends of conductance and critical
current. For large excitations, we observe the irreversible loss of coherence
between the two superfluids, and transport cannot be described only within an
uncorrelated phase-slip picture. Our findings open new directions for
investigating the interplay between dissipative and superfluid transport in
strongly correlated Fermi systems, and general concepts in out-of-equlibrium
quantum systems.Comment: 6 pages, 4 figures + Supplemental Materia
Out of equilibrium correlation functions of quantum anisotropic XY models: one-particle excitations
We calculate exactly matrix elements between states that are not eigenstates
of the quantum XY model for general anisotropy. Such quantities therefore
describe non equilibrium properties of the system; the Hamiltonian does not
contain any time dependence. These matrix elements are expressed as a sum of
Pfaffians. For single particle excitations on the ground state the Pfaffians in
the sum simplify to determinants.Comment: 11 pages, no figures; revtex. Minor changes in the text; list of
refs. modifie
Agrivoltaic System: a Case Study of PV Production and Olive Cultivation in Southern Italy
The double use of the land in the AgriVoltaic (AV) sites allows to "doubly harvest from the sun", increasing the land use exploitation with lower environmental impact. This effect strongly depends on the system configuration for both the PV and agricultural sides. The choice is between a high-density PV module arrangement, with high PV production and low agricultural harvesting, or a highly spaced arrangement with lower PV production. The present work presents a case study in Southern Italy: the simulated PV plant can have two different layouts (rated power of 7.13 MW or 5.68 MW), and each hectare can include the plantation of about 900 Arbequina olive trees
Low-frequency internal friction in silica glass
Precise low-frequency internal friction measurements on vitreous silica, taken over a wide temperature (4 K160 K the loss angle develops a distinct step-like structure followed by a plateau, both independent of ν, thus signalling the onset of a competing relaxation mechanism with much higher an activation energy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58117/2/epl_80_5_50008.pd
Mesoscopic BCS pairing in the repulsive 1d-Hubbard model
We study mesoscopic pairing in the one dimensional repulsive Hubbard model
and its interplay with the BCS model in the canonical ensemble. The key tool is
comparing the Bethe ansatz equations of the two models in the limit of small
Coulomb repulsion. For the ordinary Hubbard interaction the BCS Bethe equations
with infinite pairing coupling are recovered; a finite pairing is obtained by
considering a further density-dependent phase-correlation in the hopping
amplitude of the Hubbard model. We find that spin degrees of freedom in the
Hubbard ground state are arranged in a state of the BCS type, where the
Cooper-pairs form an un-condensed liquid on a ``lattice'' of single particle
energies provided by the Hubbard charge degrees of freedom; the condensation in
the BCS ground state corresponds to Hubbard excitations constituted by a sea of
spin singlets.Comment: 15 pages, 6 figures. To be published on Physical Review
Nanocellulose filled biobased polyurethane foams.
In this paper, nanocellulose (NC) dispersed in glycerin was incorporated into polyurethane (PU) biobased foams, using castor oil and glycerin, in a ratio of 3:1, as a biopolyol, produced by free-rise pouring method. Firstly, the morphologicals properties, measureds by scanning electronic microscopy (SEM) images, were investigated and, after, the apparent density and compressives properties were measureds. The results indicated efficience in the preparation method for the biofoams and the filled foams presented a decrease in the cellular anisotropy and linear cell density and an increase in cell diameter, with a more homogenous cell structure. These morphologicals properties justify the modifications caused by the fillers in the biofoams, a larger cell, with less orientation, caused a decrease in the values of the apparent density and consequently lower values in compressive mechanical properties
- …