105 research outputs found

    Signatures of phonon and defect-assisted tunneling in planar metal-hexagonal boron nitride-graphene junctions

    Get PDF
    Electron tunneling spectroscopy measurements on van der Waals heterostructures consisting of metal and graphene (or graphite) electrodes separated by atomically thin hexagonal boron nitride tunnel barriers are reported. The tunneling conductance, dI/dV, at low voltages is relatively weak, with a strong enhancement reproducibly observed to occur at around |V| ≈ 50 mV. While the weak tunneling at low energies is attributed to the absence of substantial overlap, in momentum space, of the metal and graphene Fermi surfaces, the enhancement at higher energies signals the onset of inelastic processes in which phonons in the heterostructure provide the momentum necessary to link the Fermi surfaces. Pronounced peaks in the second derivative of the tunnel current, d2I/dV2, are observed at voltages where known phonon modes in the tunnel junction have a high density of states. In addition, features in the tunneling conductance attributed to single electron charging of nanometer-scale defects in the boron nitride are also observed in these devices. The small electronic density of states of graphene allows the charging spectra of these defect states to be electrostatically tuned, leading to “Coulomb diamonds” in the tunneling conductance

    Atomically thin boron nitride: a tunnelling barrier for graphene devices

    Get PDF
    We investigate the electronic properties of heterostructures based on ultrathin hexagonal boron nitride (h-BN) crystalline layers sandwiched between two layers of graphene as well as other conducting materials (graphite, gold). The tunnel conductance depends exponentially on the number of h-BN atomic layers, down to a monolayer thickness. Exponential behaviour of I-V characteristics for graphene/BN/graphene and graphite/BN/graphite devices is determined mainly by the changes in the density of states with bias voltage in the electrodes. Conductive atomic force microscopy scans across h-BN terraces of different thickness reveal a high level of uniformity in the tunnel current. Our results demonstrate that atomically thin h-BN acts as a defect-free dielectric with a high breakdown field; it offers great potential for applications in tunnel devices and in field-effect transistors with a high carrier density in the conducting channel.Comment: 7 pages, 5 figure

    Association between Use of HMG CoA Reductase Inhibitors and Mortality in HIV-Infected Patients

    Get PDF
    HIV infection is a disease associated with chronic inflammation and immune activation. Antiretroviral therapy reduces inflammation, but not to levels in comparable HIV-negative individuals. The HMG-coenzyme A reductase inhibitors (statins) inhibit several pro-inflammatory processes and suppress immune activation, and are a logical therapy to assess for a possible salutary effect on HIV disease progression and outcomes.Eligible patients were patients enrolled in the Johns Hopkins HIV Clinical Cohort who achieved virologic suppression within 180 days of starting a new highly active antiretroviral therapy (HAART) regimen after January 1, 1998. Assessment was continued until death in patients who maintained a virologic suppression, with right-censoring of their follow-up time if they had an HIV RNA > 500 copies/ml. Cox proportional hazards regression was used to assess statin use as a time-varying covariate, as well as other demographic and clinical factors.A total of 1538 HIV-infected patients fulfilled eligibility criteria, of whom 238 (15.5%) received a statin while taking HAART. There were 85 deaths (7 in statin users, 78 in non-users). By multivariate Cox regression, statin use was associated with a relative hazard of 0.33 (95% CI: 0.14, 0.76; P =  0.009) after adjusting for CD4, HIV-1 RNA, hemoglobin and cholesterol levels at the start of HAART, age, race, HIV risk group, prior use of ART, year of HAART start, NNRTI vs. PI-based ART, prior AIDS-defining illness, and viral hepatitis coinfection. Malignancy, non-AIDS-defining infection and liver failure were particularly prominent causes of death.Statin use was associated with significantly lower hazard of dying in these HIV-infected patients who were being effectively treated with HAART as determined by virologic suppression. Our results suggest the need for confirmation in other observational cohorts, and if confirmed, the need for a clinical trial of statin use in HIV infection

    OC6 Phase I: Investigating the underprediction of low-frequency hydrodynamic loads and responses of a floating wind turbine

    Get PDF
    Phase I of the OC6 project is focused on examining why offshore wind design tools underpredict the response (loads/motion) of the OC5-DeepCwind semisubmersible at its surge and pitch natural frequencies. Previous investigations showed that the underprediction was primarily related to nonlinear hydrodynamic loading, so two new validation campaigns were performed to separately examine the different hydrodynamic load components. In this paper, we validate a variety of tools against this new test data, focusing on the ability to accurately model the low-frequency loads on a semisubmersible floater when held fixed under wave excitation and when forced to oscillate in the surge direction. However, it is observed that models providing better load predictions in these two scenarios do not necessarily produce a more accurate motion response in a moored configuration.The authors would like to acknowledge the support of the MARINET2 project (European Union’s Horizon 2020 grant agreement 731084), which supplied the tank test time and travel support to accomplish the testing campaign. The support of MARIN in the preparation, execution of the modeltests, and the evaluation of the uncertainties was essential for this study. MARIN’s contribution was partly funded by the Dutch Ministry of Economic Affairs through TKI-ARD funding programs. This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36- 08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes

    Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents

    Get PDF
    Microtubule-targeting agents (MTAs) are a class of clinically successful anti-cancer drugs. The emergence of multidrug resistance to MTAs imposes the need for developing new MTAs endowed with diverse mechanistic properties. Benzoxazepines were recently identified as a novel class of MTAs. These anticancer agents were thoroughly characterized for their antitumor activity, although, their exact mechanism of action remained elusive. Combining chemical, biochemical, cellular, bioinformatics and structural efforts we developed improved pyrrolonaphthoxazepines antitumor agents and their mode of action at the molecular level was elucidated. Compound 6j, one of the most potent analogues, was confirmed by X-ray as a colchicine-site MTA. A comprehensive structural investigation was performed for a complete elucidation of the structure-activity relationships. Selected pyrrolonaphthoxazepines were evaluated for their effects on cell cycle, apoptosis and differentiation in a variety of cancer cells, including multidrug resistant cell lines. Our results define compound 6j as a potentially useful optimized hit for the development of effective compounds for treating drug-resistant tumors.This work was supported in part by a grant from the Swiss National Science Foundation (31003A_166608; to M.O.S), grant BFU2016-75319-R (AEI/FEDER, EU) from Ministerio de Economia y Competitividad, Blueprint 282510, AIRC-17217. The authors acknowledge networking contribution by the COST Action CM1407 “Challenging organic syntheses inspired by nature - from natural products chemistry to drug discovery” (to M.O.S. and J.F.D.) and the COST Action EPICHEMBIO CM-1406 (to L.A. and G.C.). This work has also received partial funding from the European Union’s Horizon 2020 (EU) research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721906. Finally, this work was partially funded by MIUR-PRIN project n. 2015Y3C5KP (to L.M.)

    Hexagonal boron nitride tunnel barriers grown on graphite by high temperature molecular beam epitaxy

    Get PDF
    We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate
    corecore