16 research outputs found

    Case report: tracking data from foraging hawksbill turtles in the northern Red Sea

    Get PDF
    Background: Hawksbill turtles (Eretmochelys imbricata) are Critically Endangered throughout their global range, and concerningly little is known about this species in the Red Sea. With large-scale coastal development projects underway in the northern Red Sea, it is critical to understand the movement and habitat use patterns of hawksbill turtles in this environmentally unique region, so that effective conservation strategies can be implemented. We satellite tagged three hawksbill turtles, one 63 cm curved carapace length adult male captured near Wahlei Island, one 55 cm turtle captured in the Gulf of Aqaba, and one 56 cm turtle suffering from a floating syndrome which was captured at Waqqadi Island, rehabilitated, and released at Waqqadi Island. Turtles were tracked for 156, 199, and 372 days between October 2020 and November 2021. Results: We calculated the home ranges and core use areas of hawksbill turtles using kernel-density estimations and found that each turtle showed high fidelity to their foraging sites. Home ranges calculated with GPS-derived locations ranged between 13.6 and 2.86 km2, whereas home ranges calculated with Argos-derived locations ranged from 38.98 to 286.45 km2. GPS-derived locations also revealed a higher proportion of time spent in coral and rock habitats compared to Argos, based on location overlap with the Allen Coral Reef Atlas. We also found that turtles were making shallow dives, usually remaining between 0 and 5 m. Conclusions: While the number of tracked turtles in this study was small, it represents an important contribution to the current understanding of spatial ecology among foraging hawksbill turtles globally, and provides the first-ever reported hawksbill turtle tracking data from the Red Sea. Our results suggest that protecting coral reef habitats and implementing boating speed limits near reefs could be effective conservation measures for foraging hawksbill turtles in the face of rapid coastal development

    The complete mitochondrial genome of Dendrophyllia minuscula (Cnidaria: Scleractinia) from the NEOM region of the Northern Red Sea

    No full text
    The scleractinian coral family Dendrophylliidae is a major component of shallow and deep-water coral ecosystems worldwide, but our knowledge on the evolutionary history of the family remains scarce. Here, we used ezRAD coupled with Illumina sequencing technology and reconstructed the complete mitochondrial genome of Dendrophyllia minuscula (GenBank accession number OL634845), from mesophotic depths in the Red Sea NEOM area. The mitochondrial genome of D. minuscula consisted of 19,054 bp, organized in 13 protein-coding genes, 2 rRNA genes, and 2 tRNA genes, in agreement with the Scleractinia typical mitogenome organization. This complete mitochondrial genome contributes toward a better knowledge of mesophotic and deep-water coral diversity and evolutionary history

    A new species of Bathypathes (Cnidaria, Anthozoa, Antipatharia, Schizopathidae) from the Red Sea and its phylogenetic position

    No full text
    A black coral, Bathypathes thermophila Chimienti, sp. nov. is described from the Saudi Arabian coasts of the Gulf of Aqaba and north Red Sea (Neom area) using an integrated taxonomic approach. The morphological distinctiveness of the new species is confirmed by molecular analyses. The species thrives in warm and high salinity waters typical of the Red Sea at bathyal depths. It can form colony aggregations on muddy bottoms with scattered, small hard substrates. Colonies are monopodial, feather-like, and attached to a hard substrate through a thorny basal plate. Pinnules are simple, arranged biserially and alternately, and all the same length (up to approximately 20 cm) except for few, proximal ones. Spines are triangular, laterally compressed, subequal, smooth, and simple or rarely bifurcated. Polyps are elongated transversely, 1.5–2.0 mm in transverse diameter. Large colonies can have one or few branches, whose origin is discussed. The phylogenetic position of B. thermophila sp. nov. within the order Antipatharia, recovered using three mitochondrial markers, shows that it is nested within the family Schizopathidae. It is close to species in the genera Parantipathes, Lillipathes, Alternatipathes, and Umbellapathes rather than to the other available representatives of the genus Bathypathes, as currently defined based on morphology. In agreement with previous findings, our results question the evolutionary significance of morphological characters traditionally used to discriminate Antipatharia at higher taxonomic level

    The First Deep-Sea Stylasterid (Hydrozoa, Stylasteridae) of the Red Sea

    No full text
    The Stylasteridae, commonly known as lace corals, is a family of colonial calcifying hydrozoans mostly inhabiting deep waters. Stylasterids show a cosmopolitan distribution but, in some areas, they are characterized by low species diversity, such as in the Red Sea, where only a shallow-water species has been reported so far. With this work, we provide the first evidence of a deep-sea stylasterid inhabiting the NEOM region in the northern Saudi Arabian Red Sea, at depths ranging between 166 and 492 m. Morphological examinations revealed that this species was previously unknown and belonging to the genus Stylaster. We, therefore, describe Stylaster tritoni sp. nov., representing the first record of the genus in the Red Sea. Lastly, the phylogenetic position of the species within the Stylasteridae was evaluated, revealing a close relationship with shallow-water Indo-Pacific and Western Atlantic Stylaster species and confirming the polyphyletic nature of the genus Stylaster

    The First Deep-Sea Stylasterid (Hydrozoa, Stylasteridae) of the Red Sea

    No full text
    The Stylasteridae, commonly known as lace corals, is a family of colonial calcifying hydrozoans mostly inhabiting deep waters. Stylasterids show a cosmopolitan distribution but, in some areas, they are characterized by low species diversity, such as in the Red Sea, where only a shallow-water species has been reported so far. With this work, we provide the first evidence of a deep-sea stylasterid inhabiting the NEOM region in the northern Saudi Arabian Red Sea, at depths ranging between 166 and 492 m. Morphological examinations revealed that this species was previously unknown and belonging to the genus Stylaster. We, therefore, describe Stylaster tritoni sp. nov., representing the first record of the genus in the Red Sea. Lastly, the phylogenetic position of the species within the Stylasteridae was evaluated, revealing a close relationship with shallow-water Indo-Pacific and Western Atlantic Stylaster species and confirming the polyphyletic nature of the genus Stylaster

    A Red Sea Depth Record of the Coral-Dwelling Crab Opecarcinus (Decapoda: Cryptochiridae) in the Mesophotic Zone

    Get PDF
    Coral-dwelling gall crabs (Cryptochiridae) are obligate symbionts of stony corals and occur on shallow and deep reefs across the tropical belt. The circumtropical genus Opecarcinus associates with Agariciidae corals, a dominant component of Mesophotic Coral Ecosystems (MCEs). Here, we report the first Red Sea mesophotic record, with 89 m as the deepest record to date, for Opecarcinus—collected from Leptoseris cf mycetoseroides—from the NEOM marine area in Saudi Arabia. This observation reconfirms the depth range flexibility of Opecarcinus species and highlights the need for further mesophotic explorations of reef-associated fauna

    First record of Boulenger's anthias Sacura boulengeri (Heemstra 1973) in the Red Sea

    No full text
    In November 2020, we observed several individuals and collected one juvenile of an unidentified anthiadine fish (Serranidae) between depths of 250 and 307 m near vertical walls of rocky reefs in the northern Red Sea. Further morphological and molecular analyses revealed that the collected specimen matches Sacura boulengeri, a species previously reported only from the Gulf of Oman to India

    Mesophotic foraminiferal-algal nodules play a role in the Red Sea carbonate budget

    No full text
    Abstract During two scientific expeditions between 2020 and 2022, direct surveys led to the discovery of free-living mesophotic foraminiferal-algal nodules along the coast of the NEOM region (northern Saudi Arabian Red Sea) where they form an unexpected benthic ecosystem in mesophotic water depths on the continental shelf. Being mostly spheroidal, the nodules are transported en masse down slope, into the deep water of the basin, where they stop accreting. Radiometric dating informs that these nodules can be more than two thousand years old and that they collectively contribute up to 66 g m−2 year−1 to the mesophotic benthic carbonate budget and account for at least 980 megatons of calcium carbonate, a substantial contribution considering the depauperate production of carbonate by other means in this light-limited environment. Our findings advance the knowledge of mesophotic biodiversity and carbonate production, and provide data that will inform conservation policies in the Saudi Arabian Red Sea

    Low diversity and abundance of predatory fishes in a peripheral coral reef ecosystem

    No full text
    Abstract Semi‐enclosed seas are often associated with elevated local threats and distinct biogeographic patterns among marine fishes, but our understanding of how fish assemblage dynamics vary in relation to relatively small semi‐enclosed seas (e.g., the Gulf of Aqaba) remains limited. Baited remote underwater video surveys (n = 111) were conducted across ~300 km of coral reef habitats in the Gulf of Aqaba and the northern Red Sea. A total of 55 predatory fish species were detected, with less than half of all species (n = 23) observed in both basins. Relative abundance patterns between the Gulf of Aqaba and the northern Red Sea were variable among taxa, but nearly twice as many predatory fish were observed per unit of effort in the northern Red Sea. In general, assemblages in both basins were dominated by three taxa (Epinephelinae, Carangidae, and Lethrinidae). Large‐bodied and threatened species were recorded at very low abundances. Multivariate analysis revealed distinct assemblage structuring of coral reef predators between the Gulf of Aqaba and the northern Red Sea. Most of the species driving these differences were recorded in both basins, but occurred at varying levels of abundance. Environmental factors were largely unsuccessful in explaining variation in assemblage structuring. These findings indicate that biological assemblages in the Gulf of Aqaba are more distinct than previously reported and that reef fish assemblage structuring can occur even within a relatively small semi‐enclosed sea. Despite inter‐basin assemblage structuring, the overall low abundance of vulnerable fish species is suggestive of overexploitation in both the Gulf of Aqaba and the northern Red Sea of Saudi Arabia. As the region surveyed is currently undergoing large‐scale coastal development, the results presented herein aim to guide spatial management and recovery plans for these coral reef systems in relation to this development
    corecore