234 research outputs found
CAG Repeat Variants in the POLG1 Gene Encoding mtDNA Polymerase-Gamma and Risk of Breast Cancer in African-American Women
The DNA polymerase-gamma (POLG) gene, which encodes the catalytic subunit of enzyme responsible for directing mitochondrial DNA replication in humans, contains a polyglutamine tract encoded by CAG repeats of varying length. The length of the CAG repeat has been associated with the risk of testicular cancer, and other genomic variants that impact mitochondrial function have been linked to breast cancer risk in African-American (AA) women. We evaluated the potential role of germline POLG-CAG repeat variants in breast cancer risk in a sample of AA women (100 cases and 100 age-matched controls) who participated in the Women's Circle of Health Study, an ongoing multi-institutional, case-control study of breast cancer. Genotyping was done by fragment analysis in a blinded manner. Results from this small study suggest the possibility of an increased risk of breast cancer in women with minor CAG repeat variants of POLG, but no statistically significant differences in CAG repeat length were observed between cases and controls (multivariate-adjusted odds ratio 1.74; 95% CI, 0.49–6.21). Our study suggests that POLG-CAG repeat length is a potential risk factor for breast cancer that needs to be explored in larger population-based studies
PAH–DNA Adducts, Cigarette Smoking, GST Polymorphisms, and Breast Cancer Risk
BackgroundPolycyclic aromatic hydrocarbons (PAHs) may increase breast cancer risk, and the association may be modified by inherited differences in deactivation of PAH intermediates by glutathione S-transferases (GSTs). Few breast cancer studies have investigated the joint effects of multiple GSTs and a PAH biomarker.ObjectiveWe estimated the breast cancer risk associated with multiple polymorphisms in the GST gene (GSTA1, GSTM1, GSTP1, and GSTT1) and the interaction with PAH–DNA adducts and cigarette smoking.MethodsWe conducted unconditional logistic regression using data from a population-based sample of women (cases/controls, respectively): GST polymorphisms were genotyped using polymerase chain reaction and matrix-assisted laser desorption/ionization time-of-flight assays (n = 926 of 916), PAH–DNA adduct blood levels were measured by competitive enzyme-linked immunosorbent assay (n = 873 of 941), and smoking status was assessed by in-person questionnaires (n = 943 of 973).ResultsOdds ratios for joint effects on breast cancer risk among women with at least three variant alleles were 1.56 [95% confidence interval (CI), 1.13–2.16] for detectable PAH–DNA adducts and 0.93 (95% CI, 0.56–1.56) for no detectable adducts; corresponding odds ratios for three or more variants were 1.18 (95% CI, 0.82–1.69) for ever smokers and 1.44 (95% CI, 0.97–2.14) for never smokers. Neither interaction was statistically significant (p = 0.43 and 0.62, respectively).ConclusionWe found little statistical evidence that PAHs interacted with GSTT1, GSTM1, GSTP1, and GSTA1 polymorphisms to further increase breast cancer risk
Menopausal Status Modifies Breast Cancer Risk Associated with the Myeloperoxidase (MPO) G463A Polymorphism in Caucasian Women: A Meta-Analysis
BACKGROUND: Breast cancer susceptibility may be modulated partly through polymorphisms in oxidative enzymes, one of which is myeloperoxidase (MPO). Association of the low transcription activity variant allele A in the G463A polymorphism has been investigated for its association with breast cancer risk, considering the modifying effects of menopausal status and antioxidant intake levels of cases and controls. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a more precise estimate of association using the odds ratio (OR), we performed a meta-analysis of 2,975 cases and 3,427 controls from three published articles of Caucasian populations living in the United States. Heterogeneity among studies was tested and sensitivity analysis was applied. The lower transcriptional activity AA genotype of MPO in the pre-menopausal population showed significantly reduced risk (OR 0.56-0.57, p = 0.03) in contrast to their post-menopausal counterparts which showed non-significant increased risk (OR 1.14; p = 0.34-0.36). High intake of antioxidants (OR 0.67-0.86, p = 0.04-0.05) and carotenoids (OR 0.68-0.86, p = 0.03-0.05) conferred significant protection in the women. Stratified by menopausal status, this effect was observed in pre-menopausal women especially those whose antioxidant intake was high (OR 0.42-0.69, p = 0.04). In post-menopausal women, effect of low intake elicited susceptibility (OR 1.19-1.67, p = 0.07-0.17) to breast cancer. CONCLUSIONS/SIGNIFICANCE: Based on a homogeneous Caucasian population, the MPO G463A polymorphism places post-menopausal women at risk for breast cancer, where this effect is modified by diet
The Potential for Enhancing the Power of Genetic Association Studies in African Americans through the Reuse of Existing Genotype Data
We consider the feasibility of reusing existing control data obtained in genetic association studies in order to reduce costs for new studies. We discuss controlling for the population differences between cases and controls that are implicit in studies utilizing external control data. We give theoretical calculations of the statistical power of a test due to Bourgain et al (Am J Human Genet 2003), applied to the problem of dealing with case-control differences in genetic ancestry related to population isolation or population admixture. Theoretical results show that there may exist bounds for the non-centrality parameter for a test of association that places limits on study power even if sample sizes can grow arbitrarily large. We apply this method to data from a multi-center, geographically-diverse, genome-wide association study of breast cancer in African-American women. Our analysis of these data shows that admixture proportions differ by center with the average fraction of European admixture ranging from approximately 20% for participants from study sites in the Eastern United States to 25% for participants from West Coast sites. However, these differences in average admixture fraction between sites are largely counterbalanced by considerable diversity in individual admixture proportion within each study site. Our results suggest that statistical correction for admixture differences is feasible for future studies of African-Americans, utilizing the existing controls from the African-American Breast Cancer study, even if case ascertainment for the future studies is not balanced over the same centers or regions that supplied the controls for the current study
CYP17, GSTP1, PON1 and GLO1 gene polymorphisms as risk factors for breast cancer: an Italian case-control study
<p>Abstract</p> <p>Background</p> <p>Estrogens, environmental chemicals with carcinogenic potential, as well as oxidative and carbonyl stresses play a very important role in breast cancer (BC) genesis and progression. Therefore, polymorphisms of genes encoding enzymes involved in estrogen biosynthesis pathway and in the metabolic activation of pro-carcinogens to genotoxic intermediates, such as cytochrome P450C17α (CYP17), endogenous free-radical scavenging systems, such as glutathione S-transferase (GSTP1) and paraoxonase 1 (PON1), and anti-glycation defenses, such as glyoxalase I (GLO1), could influence individual susceptibility to BC. In the present case-control study, we investigated the possible association of CYP17 A1A2, GSTP1 ILE105VAL, PON1 Q192R or L55M, and GLO1 A111E polymorphisms with the risk of BC.</p> <p>Methods</p> <p>The above-said five polymorphisms were characterized in 547 patients with BC and in 544 healthy controls by PCR/RFLP methods, using DNA from whole blood. To estimate the relative risks, Odds ratios and 95% confidence intervals were calculated using unconditional logistic regression after adjusting for the known risk factors for BC.</p> <p>Results</p> <p>CYP17 polymorphism had no major effect in BC proneness in the overall population. However, it modified the risk of BC for certain subgroups of patients. In particular, among premenopausal women with the A1A1 genotype, a protective effect of later age at menarche and parity was observed. As to GSTP1 and PON1 192 polymorphisms, the mutant Val and R alleles, respectively, were associated with a decreased risk of developing BC, while polymorphisms in PON1 55 and GLO1 were associated with an increased risk of this neoplasia. However, these findings, while nominally significant, did not withstand correction for multiple testing.</p> <p>Conclusion</p> <p>Genetic polymorphisms in biotransformation enzymes CYP17, GSTP1, PON1 and GLO1 could be associated with the risk for BC. Although significances did not withstand correction for multiple testing, the results of our exploratory analysis warrant further studies on the above mentioned genes and BC.</p
A Pilot Study of Circulating miRNAs as Potential Biomarkers of Early Stage Breast Cancer
To date, there are no highly sensitive and specific minimally invasive biomarkers for detection of breast cancer at an early stage. The occurrence of circulating microRNAs (miRNAs) in blood components (including serum and plasma) has been repeatedly observed in cancer patients as well as healthy controls. Because of the significance of miRNA in carcinogenesis, circulating miRNAs in blood may be unique biomarkers for early and minimally invasive diagnosis of human cancers. The objective of this pilot study was to discover a panel of circulating miRNAs as potential novel breast cancer biomarkers.Using microarray-based expression profiling followed by Real-Time quantitative Polymerase Cycle Reaction (RT-qPCR) validation, we compared the levels of circulating miRNAs in plasma samples from 20 women with early stage breast cancer (10 Caucasian American (CA) and 10 African American (AA)) and 20 matched healthy controls (10 CAs and 10 AAs). Using the significance level of p<0.05 constrained by at least two-fold expression change as selection criteria, we found that 31 miRNAs were differentially expressed in CA study subjects (17 up and 14 down) and 18 miRNAs were differentially expressed in AA study subjects (9 up and 9 down). Interestingly, only 2 differentially expressed miRNAs overlapped between CA and AA study subjects. Using receiver operational curve (ROC) analysis, we show that not only up-regulated but also down-regulated miRNAs can discriminate patients with breast cancer from healthy controls with reasonable sensitivity and specificity. To further explore the potential roles of these circulating miRNAs in breast carcinogenesis, we applied pathway-based bioinformatics exploratory analysis and predicted a number of significantly enriched pathways which are predicted to be regulated by these circulating miRNAs, most of which are involved in critical cell functions, cancer development and progression.Our observations from this pilot study suggest that the altered levels of circulating miRNAs might have great potential to serve as novel, noninvasive biomarkers for early detection of breast cancer
Cyclophosphamide- metabolizing enzyme polymorphisms and survival outcomes after adjuvant chemotherapy for node-positive breast cancer: a retrospective cohort study
Abstract Introduction Cyclophosphamide-based adjuvant chemotherapy is a mainstay of treatment for women with node-positive breast cancer, but is not universally effective in preventing recurrence. Pharmacogenetic variability in drug metabolism is one possible mechanism of treatment failure. We hypothesize that functional single nucleotide polymorphisms (SNPs) in drug metabolizing enzymes (DMEs) that activate (CYPs) or metabolize (GSTs) cyclophosphamide account for some of the observed variability in disease outcomes. Methods We performed a retrospective cohort study of 350 women enrolled in a multicenter, randomized, adjuvant breast cancer chemotherapy trial (ECOG-2190/INT-0121). Subjects in this trial received standard-dose cyclophosphamide, doxorubicin and fluorouracil (CAF), followed by either observation or high-dose cyclophosphamide and thiotepa with stem cell rescue. We used bone marrow stem cell-derived genomic DNA from archival specimens to genotype CYP2B6, CYP2C9, CYP2D6, CYP3A4, CYP3A5, GSTM1, GSTT1, and GSTP1. Cox regression models were computed to determine associations between genotypes (individually or in combination) and disease-free survival (DFS) or overall survival (OS), adjusting for confounding clinical variables. Results In the full multivariable analysis, women with at least one CYP3A4 *1B variant allele had significantly worse DFS than those who were wild-type *1A/*1A (multivariate hazard ratio 2.79; 95% CI 1.52, 5.14). CYP2D6 genotype did not impact this association among patients with estrogen receptor (ER) -positive tumors scheduled to receive tamoxifen. Conclusions These data support the hypothesis that genetic variability in cyclophosphamide metabolism independently impacts outcome from adjuvant chemotherapy for breast cancer
Pretreatment Serum Concentrations of 25-Hydroxyvitamin D and Breast Cancer Prognostic Characteristics: A Case-Control and a Case-Series Study
Results from epidemiologic studies on the relationship between vitamin D and breast cancer risk are inconclusive. It is possible that vitamin D may be effective in reducing risk only of specific subtypes due to disease heterogeneity.In case-control and case-series analyses, we examined serum concentrations of 25-hydroxyvitamin D (25OHD) in relation to breast cancer prognostic characteristics, including histologic grade, estrogen receptor (ER), and molecular subtypes defined by ER, progesterone receptor (PR) and HER2, among 579 women with incident breast cancer and 574 controls matched on age and time of blood draw enrolled in the Roswell Park Cancer Institute from 2003 to 2008. We found that breast cancer cases had significantly lower 25OHD concentrations than controls (adjusted mean, 22.8 versus 26.2 ng/mL, p<0.001). Among premenopausal women, 25OHD concentrations were lower in those with high- versus low-grade tumors, and ER negative versus ER positive tumors (p≤0.03). Levels were lowest among women with triple-negative cancer (17.5 ng/mL), significantly different from those with luminal A cancer (24.5 ng/mL, p = 0.002). In case-control analyses, premenopausal women with 25OHD concentrations above the median had significantly lower odds of having triple-negative cancer (OR = 0.21, 95% CI = 0.08-0.53) than those with levels below the median; and every 10 ng/mL increase in serum 25OHD concentrations was associated with a 64% lower odds of having triple-negative cancer (OR = 0.36, 95% CI = 0.22-0.56). The differential associations by tumor subtypes among premenopausal women were confirmed in case-series analyses.In our analyses, higher serum levels of 25OHD were associated with reduced risk of breast cancer, with associations strongest for high grade, ER negative or triple negative cancers in premenopausal women. With further confirmation in large prospective studies, these findings could warrant vitamin D supplementation for reducing breast cancer risk, particularly those with poor prognostic characteristics among premenopausal women
- …