598 research outputs found
Recommended from our members
Silicon-Germanium Films Deposited by Low Frequency PE CVD: Effect of H2 and Ar Dilution
We have studied structure and electrical properties of Si{sub 1-Y}Ge{sub Y}:H films deposited by low frequency PE CVD over the entire composition range from Y=0 to Y=1. The deposition rate of the films and their structural and electrical properties were measured for various ratios of the germane/silane feed gases and with and without dilution by Ar and by H{sub 2}. Structure and composition was studied by Auger electron spectroscopy (AES), secondary ion mass spectroscopy (SIMS) and Fourier transform infrared (FTIR) spectroscopy. Surface morphology was characterized by atomic force microscopy (AFM). We found: (1) The deposition rate increased with Y maximizing at Y=1 without dilution. (2) The relative rate of Ge and Si incorporation is affected by dilution. (3) Hydrogen preferentially bonds to silicon. (4) Hydrogen content decreases for increasing Y. In addition, optical measurements showed that as Y goes for 0 to 1, the Fermi level moves from mid gap to the conduction band edge, i.e. the films become more n-type. No correlation was found between the pre-exponential and the activation energy of conductivity. The behavior of the conductivity {gamma}-factor suggests a local minimum in the density of states at E {approx} 0.33 eV for the films grown with or without H-dilution and E {approx} 0.25 eV for the films with Ar dilution
Status of four-neutrino mass schemes: a global and unified approach to current neutrino oscillation data
We present a unified global analysis of neutrino oscillation data within the
framework of the four-neutrino mass schemes (3+1) and (2+2). We include all
data from solar and atmospheric neutrino experiments, as well as information
from short-baseline experiments including LSND. If we combine only solar and
atmospheric neutrino data, (3+1) schemes are clearly preferred, whereas
short-baseline data in combination with atmospheric data prefers (2+2) models.
When combining all data in a global analysis the (3+1) mass scheme gives a
slightly better fit than the (2+2) case, though all four-neutrino schemes are
presently acceptable. The LSND result disfavors the three-active neutrino
scenario with only and at 99.9% CL with
respect to the four-neutrino best fit model. We perform a detailed analysis of
the goodness of fit to identify which sub-set of the data is in disagreement
with the best fit solution in a given mass scheme.Comment: 32 pages, 8 Figures included, REVTeX4.Improved discussion in sec. XI,
references added, version accepted by Phys. Rev.
CP violation effect in long-baseline neutrino oscillation in the four-neutrino model
We investigate CP-violation effect in the long-baseline neutrino oscillation
in the four-neutrino model with mass scheme of the two nearly degenerate pairs
separated with the order of 1 eV, by using the data from the solar neutrino
deficit, the atmospheric neutrino anomaly and the LSND experiments along with
the other accelerator and reactor experiments. By use of the most general
parametrization of the mixing matrix with six angles and six phases, we show
that the genuine CP-violation effect could attain as large as 0.3 for and that the matter effect is negligibly
small such as at most 0.01 for for , which is the mass-squared difference relevant
to the long-baseline oscillation.Comment: 21 pages in LaTeX, 9 ps figures. Some changes in the Introduction and
Reference
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
Neutrinoless double-beta decay with three or four neutrino mixing
Considering the scheme with mixing of three neutrinos and a mass hierarchy
that can accommodate the results of solar and atmospheric neutrino experiments,
it is shown that the results of solar neutrino experiments imply a lower bound
for the effective Majorana mass in neutrinoless double-beta decay, under the
natural assumptions that massive neutrinos are Majorana particles and there are
no unlikely fine-tuned cancellations among the contributions of the different
neutrino masses. Considering the four-neutrino schemes that can accommodate
also the results of the LSND experiment, it is shown that only one of them is
compatible with the results of neutrinoless double-beta decay experiments and
with the measurement of the abundances of primordial elements produced in
Big-Bang Nucleosynthesis. It is shown that in this scheme, under the
assumptions that massive neutrinos are Majorana particles and there are no
cancellations among the contributions of the different neutrino masses, the
results of the LSND experiment imply a lower bound for the effective Majorana
mass in neutrinoless double-beta decay.Comment: 18 pages including 2 figures, RevTe
Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory
The Pierre Auger Collaboration has reported evidence for anisotropy in the
distribution of arrival directions of the cosmic rays with energies
eV. These show a correlation with the distribution
of nearby extragalactic objects, including an apparent excess around the
direction of Centaurus A. If the particles responsible for these excesses at
are heavy nuclei with charge , the proton component of the
sources should lead to excesses in the same regions at energies . We here
report the lack of anisotropies in these directions at energies above
(for illustrative values of ). If the anisotropies
above are due to nuclei with charge , and under reasonable
assumptions about the acceleration process, these observations imply stringent
constraints on the allowed proton fraction at the lower energies
Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory
On September 14, 2015 the Advanced LIGO detectors observed their first
gravitational-wave (GW) transient GW150914. This was followed by a second GW
event observed on December 26, 2015. Both events were inferred to have arisen
from the merger of black holes in binary systems. Such a system may emit
neutrinos if there are magnetic fields and disk debris remaining from the
formation of the two black holes. With the surface detector array of the Pierre
Auger Observatory we can search for neutrinos with energy above 100 PeV from
point-like sources across the sky with equatorial declination from about -65
deg. to +60 deg., and in particular from a fraction of the 90% confidence-level
(CL) inferred positions in the sky of GW150914 and GW151226. A targeted search
for highly-inclined extensive air showers, produced either by interactions of
downward-going neutrinos of all flavors in the atmosphere or by the decays of
tau leptons originating from tau-neutrino interactions in the Earth's crust
(Earth-skimming neutrinos), yielded no candidates in the Auger data collected
within s around or 1 day after the coordinated universal time (UTC)
of GW150914 and GW151226, as well as in the same search periods relative to the
UTC time of the GW candidate event LVT151012. From the non-observation we
constrain the amount of energy radiated in ultrahigh-energy neutrinos from such
remarkable events.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Operations of and Future Plans for the Pierre Auger Observatory
Technical reports on operations and features of the Pierre Auger Observatory,
including ongoing and planned enhancements and the status of the future
northern hemisphere portion of the Observatory. Contributions to the 31st
International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200
Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV
We describe the measurement of the depth of maximum, Xmax, of the
longitudinal development of air showers induced by cosmic rays. Almost four
thousand events above 10^18 eV observed by the fluorescence detector of the
Pierre Auger Observatory in coincidence with at least one surface detector
station are selected for the analysis. The average shower maximum was found to
evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/-
0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured
shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The
interpretation of these results in terms of the cosmic ray mass composition is
briefly discussed.Comment: Accepted for publication by PR
- …