598 research outputs found

    Status of four-neutrino mass schemes: a global and unified approach to current neutrino oscillation data

    Get PDF
    We present a unified global analysis of neutrino oscillation data within the framework of the four-neutrino mass schemes (3+1) and (2+2). We include all data from solar and atmospheric neutrino experiments, as well as information from short-baseline experiments including LSND. If we combine only solar and atmospheric neutrino data, (3+1) schemes are clearly preferred, whereas short-baseline data in combination with atmospheric data prefers (2+2) models. When combining all data in a global analysis the (3+1) mass scheme gives a slightly better fit than the (2+2) case, though all four-neutrino schemes are presently acceptable. The LSND result disfavors the three-active neutrino scenario with only Δmsol2\Delta m^2_{sol} and Δmatm2\Delta m^2_{atm} at 99.9% CL with respect to the four-neutrino best fit model. We perform a detailed analysis of the goodness of fit to identify which sub-set of the data is in disagreement with the best fit solution in a given mass scheme.Comment: 32 pages, 8 Figures included, REVTeX4.Improved discussion in sec. XI, references added, version accepted by Phys. Rev.

    CP violation effect in long-baseline neutrino oscillation in the four-neutrino model

    Get PDF
    We investigate CP-violation effect in the long-baseline neutrino oscillation in the four-neutrino model with mass scheme of the two nearly degenerate pairs separated with the order of 1 eV, by using the data from the solar neutrino deficit, the atmospheric neutrino anomaly and the LSND experiments along with the other accelerator and reactor experiments. By use of the most general parametrization of the mixing matrix with six angles and six phases, we show that the genuine CP-violation effect could attain as large as 0.3 for ΔP(νμντ)P(νμντ)P(νμˉντˉ)\Delta P(\nu_\mu\to\nu_\tau) \equiv P(\nu_\mu\to\nu_\tau) - P(\bar{\nu_\mu}\to\bar{\nu_\tau}) and that the matter effect is negligibly small such as at most 0.01 for ΔP(νμντ)\Delta P(\nu_\mu\to\nu_\tau) for Δm2=(15)×103eV2\Delta m^2 = (1-5)\times 10^{-3} {\rm eV}^2, which is the mass-squared difference relevant to the long-baseline oscillation.Comment: 21 pages in LaTeX, 9 ps figures. Some changes in the Introduction and Reference

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Neutrinoless double-beta decay with three or four neutrino mixing

    Full text link
    Considering the scheme with mixing of three neutrinos and a mass hierarchy that can accommodate the results of solar and atmospheric neutrino experiments, it is shown that the results of solar neutrino experiments imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay, under the natural assumptions that massive neutrinos are Majorana particles and there are no unlikely fine-tuned cancellations among the contributions of the different neutrino masses. Considering the four-neutrino schemes that can accommodate also the results of the LSND experiment, it is shown that only one of them is compatible with the results of neutrinoless double-beta decay experiments and with the measurement of the abundances of primordial elements produced in Big-Bang Nucleosynthesis. It is shown that in this scheme, under the assumptions that massive neutrinos are Majorana particles and there are no cancellations among the contributions of the different neutrino masses, the results of the LSND experiment imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay.Comment: 18 pages including 2 figures, RevTe

    Anisotropy and chemical composition of ultra-high energy cosmic rays using arrival directions measured by the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Collaboration has reported evidence for anisotropy in the distribution of arrival directions of the cosmic rays with energies E>Eth=5.5×1019E>E_{th}=5.5\times 10^{19} eV. These show a correlation with the distribution of nearby extragalactic objects, including an apparent excess around the direction of Centaurus A. If the particles responsible for these excesses at E>EthE>E_{th} are heavy nuclei with charge ZZ, the proton component of the sources should lead to excesses in the same regions at energies E/ZE/Z. We here report the lack of anisotropies in these directions at energies above Eth/ZE_{th}/Z (for illustrative values of Z=6, 13, 26Z=6,\ 13,\ 26). If the anisotropies above EthE_{th} are due to nuclei with charge ZZ, and under reasonable assumptions about the acceleration process, these observations imply stringent constraints on the allowed proton fraction at the lower energies

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Operations of and Future Plans for the Pierre Auger Observatory

    Full text link
    Technical reports on operations and features of the Pierre Auger Observatory, including ongoing and planned enhancements and the status of the future northern hemisphere portion of the Observatory. Contributions to the 31st International Cosmic Ray Conference, Lodz, Poland, July 2009.Comment: Contributions to the 31st ICRC, Lodz, Poland, July 200

    Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Get PDF
    We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10^18 eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106 +35/-21) g/cm^2/decade below 10^(18.24 +/- 0.05) eV and (24 +/- 3) g/cm^2/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm^2. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.Comment: Accepted for publication by PR
    corecore