147 research outputs found

    The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration

    Get PDF
    Anaplastic large cell lymphomas (ALCL) are mainly characterized by the reciprocal translocation t(2;5)(p23;q35) that involves the anaplastic lymphoma kinase (ALK) gene and generates the fusion protein NPM-ALK with intrinsic tyrosine kinase activity. NPM-ALK triggers several signaling cascades, leading to increased cell growth, resistance to apoptosis, and changes in morphology and migration of transformed cells. To search for new NPM-ALK interacting molecules, we developed a mass spectrometry-based proteomic approach in HEK293 cells expressing an inducible NPM-ALK and identified the tyrosine phosphatase Shp2 as a candidate substrate. We found that NPM-ALK was able to bind Shp2 in coprecipitation experiments and to induce its phosphorylation in the tyrosine residues Y542 and Y580 both in HEK293 cells and ALCL cell lines. In primary lymphomas, antibodies against the phosphorylated tyrosine Y542 of Shp2 mainly stained ALK-positive cells. In ALCL cell lines, Shp2-constitutive phosphorylation was dependent on NPM-ALK, as it significantly decreased after short hairpin RNA (shRNA)-mediated NPM-ALK knock down. In addition, only the constitutively active NPM-ALK, but not the kinase dead NPM-ALK(K210R), formed a complex with Shp2, Gab2, and growth factor receptor binding protein 2 (Grb2), where Grb2 bound to the phosphorylated Shp2 through its SH2 domain. Shp2 knock down by specific shRNA decreased the phosphorylation of extracellular signal-regulated kinase 1/2 and of the tyrosine residue Y416 in the activation loop of Src, resulting in impaired ALCL cell proliferation and growth disadvantage. Finally, migration of ALCL cells was reduced by Shp2 shRNA. These findings show a direct involvement of Shp2 in NPM-ALK lymphomagenesis, highlighting its critical role in lymphoma cell proliferation and migration

    Simple and Rapid In Vivo Generation of Chromosomal Rearrangements using CRISPR/Cas9 Technology

    Get PDF
    Summary Generation of genetically engineered mouse models (GEMMs) for chromosomal translocations in the endogenous loci by a knockin strategy is lengthy and costly. The CRISPR/Cas9 system provides an innovative and flexible approach for genome engineering of genomic loci in vitro and in vivo. Here, we report the use of the CRISPR/Cas9 system for engineering a specific chromosomal translocation in adult mice in vivo. We designed CRISPR/Cas9 lentiviral vectors to induce cleavage of the murine endogenous Eml4 and Alk loci in order to generate the Eml4-Alk gene rearrangement recurrently found in non-small-cell lung cancers (NSCLCs). Intratracheal or intrapulmonary inoculation of lentiviruses induced Eml4-Alk gene rearrangement in lung cells in vivo. Genomic and mRNA sequencing confirmed the genome editing and the production of the Eml4-Alk fusion transcript. All mice developed Eml4-Alk -rearranged lung tumors 2 months after the inoculation, demonstrating that the CRISPR/Cas9 system is a feasible and simple method for the generation of chromosomal rearrangements in vivo

    Regulation of CD45 phosphatase by oncogenic ALK in anaplastic large cell lymphoma

    Get PDF
    Anaplastic Large Cell Lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma frequently driven by the chimeric tyrosine kinase NPM-ALK, generated by the t (2,5)(p23;q35) translocation. While ALK+ ALCL belongs to mature T cell lymphomas, loss of T cell identity is observed in the majority of ALCL secondary to a transcriptional and epigenetic repressive program induced by oncogenic NPM-ALK. While inhibiting the expression of T cell molecules, NPM-ALK activates surrogate TCR signaling by directly inducing pathways downstream the TCR. CD45 is a tyrosine phosphatase that plays a central role in T cell activation by controlling the TCR signaling and regulating the cytokine responses through the JAK/STAT pathway and exists in different isoforms depending on the stage of T-cell maturation, activation and differentiation. ALK+ ALCL cells mainly express the isoform CD45RO in keeping with their mature/memory T cell phenotype. Because of its regulatory effect on the JAK/STAT pathway that is essential for ALK+ ALCL, we investigated whether CD45 expression was affected by oncogenic ALK. We found that most ALK+ ALCL cell lines express the CD45RO isoform with modest CD45RA expression and that NPM-ALK regulated the expression of these CD45 isoforms. Regulation of CD45 expression was dependent on ALK kinase activity as CD45RO expression was increased when NPM-ALK kinase activity was inhibited by treatment with ALK tyrosine kinase inhibitors (TKIs). Silencing ALK expression through shRNA or degradation of ALK by the PROTAC TL13-112 caused upregulation of CD45RO both at mRNA and protein levels with minimal changes on CD45RA, overall indicating that oncogenic ALK downregulates the expression of CD45. CD45 repression was mediated by STAT3 as demonstrated by ChIP-seq data on ALCL cells treated with the ALK-TKI crizotinib or cells treated with a STAT3 degrader. Next, we found that knocking-out CD45 with the CRISPR/Cas9 system resulted in increased resistance to ALK TKI treatment and CD45 was down-regulated in ALCL cells that developed resistance in vitro to ALK TKIs. Overall, these data suggest that CD45 expression is regulated by ALK via STAT3 and acts as a rheostat of ALK oncogenic signaling and resistance to TKI treatment in ALCL

    How to manage KRAS G12C-mutated advanced non-small-cell lung cancer

    Get PDF
    Constitutive KRAS signalling drives tumorigenesis across several cancer types. In non-small-cell lung cancer (NSCLC) activating KRAS mutations occur in ~30% of cases, and the glycine to cysteine substitution at codon 12 (G12C) is the most common KRAS alteration. Although KRAS mutations have been considered undruggable for over 40 years, the recent discovery of allelic-specific KRAS inhibitors has paved the way to personalized cancer medicine for patients with tumours harbouring these mutations. Here, we review the current treatment landscape for patients with advanced NSCLCs harbouring a KRAS G12C mutation, including PD-(L) 1-based therapies and direct KRAS inhibitors as well as sequential treatment options. We also explore the possible mechanisms of resistance to KRAS inhibition and strategies to overcome resistance in patients with KRAS G12C-mutant NSCLC

    Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells

    Get PDF
    Activation-induced cytidine deaminase (AID) is a B-cell specific enzyme that targets immunoglobulin (Ig) genes to initiate class switch recombination (CSR) and somatic hypermutation (SHM)(1). Through off-target activity, however, AID has a much broader impact on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in lymphoma development and progression(2). AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation(3). The phosphatidylinositol 3-kinase (PI3K) δ pathway plays a key role in AID regulation by suppressing its expression in B cells(4). Novel drugs for leukemia or lymphoma therapy such as idelalisib, duvelisib or ibrutinib block PI3Kδ activity directly or indirectly(5–8), potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation (SHM) and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both these effects were completely abrogated in AID deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumors in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IgH and AID off-target sites in human chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased SHM in AID off-targets. In summary, we show that PI3Kδ or BTK inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism, an effect that should be carefully considered as such inhibitors are administered for years to patients

    Role of anti-osteopontin antibodies in multiple sclerosis and experimental autoimmune encephalomyelitis

    Get PDF
    Osteopontin (OPN) is highly expressed in demyelinating lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). OPN is cleaved by thrombin into N- (OPN-N) and C-terminal (OPN-C) fragments with different ligands and functions. In EAE, administering recombinant OPN induces relapses, whereas treatment with anti-OPN antibodies ameliorates the disease. Anti-OPN autoantibodies (autoAbs) are spontaneously produced during EAE but have never been detected in MS. The aim of the study was to evaluate anti-OPN autoAbs in the serum of MS patients, correlate them with disease course, and recapitulate the human findings in EAE. We performed ELISA in the serum of 122 patients collected cross-sectionally, and 50 patients with relapsing-remitting (RR) disease collected at diagnosis and followed longitudinally for 10 years. In the cross-sectional patients, the autoAb levels were higher in the RR patients than in the primary- and secondary-progressive MS and healthy control groups, and they were highest in the initial stages of the disease. In the longitudinal group, the levels at diagnosis directly correlated with the number of relapses during the following 10 years. Moreover, in patients with active disease, who underwent disease-modifying treatments, autoAbs were higher than in untreated patients and were associated with low MS severity score. The autoAb displayed neutralizing activity and mainly recognized OPN-C rather than OPN-N. To confirm the clinical effect of these autoAbs in vivo, EAE was induced using myelin oligodendrocyte glycoprotein MOG35-55 in C57BL/6 mice pre-vaccinated with ovalbumin (OVA)-linked OPN or OVA alone. We then evaluated the titer of antibodies to OPN, the clinical scores and in vitro cytokine secretion by spleen lymphocytes. Vaccination significantly induced antibodies against OPN during EAE, decreased disease severity, and the protective effect was correlated with decreased T cell secretion of interleukin 17 and interferon-\u3b3 ex vivo. The best effect was obtained with OPN-C, which induced significantly faster and more complete remission than other OPN vaccines. In conclusion, these data suggest that production of anti-OPN autoAbs may favor remission in both MS and EAE. Novel strategies boosting their levels, such as vaccination or passive immunization, may be proposed as a future strategy in personalized MS therapy
    • …
    corecore