93 research outputs found

    Variations in p-mode Parameters and Sub-surface Flows of Active Regions with Flare Activity

    Full text link
    We examine the characteristic properties of photospheric p-modes and sub-photospheric flows of active regions (ARs) observed during the period of 26-31 October 2003. Using ring diagram analysis of Doppler velocity data obtained from the Global Oscillations Network Group (GONG), we have found that p-mode parameters evolve with ARs and show a strong association with flare activity. Sub-photospheric flows, derived using inversions of p-modes, show strong twist at the locations of ARs, and large variation with flare activity.Comment: 7 pages, 3 figures, to be appear in the ASI Conference Serie

    Activity Related Variations of High-Degree p-Mode Amplitude, Width and Energy in Solar Active Regions

    Full text link
    We study the properties of high degree p-mode oscillations in flaring and dormant ARs and compare them with those in corresponding quiet regions (QRs) to find the association of mode parameters with magnetic and flare related activities. Our analysis of several flaring and dormant ARs, showed strong association of mode amplitude, width and energy with magnetic and flare activities although their changes are combined effects of foreshortening, filling factor, magnetic activity, flare activity, and measurement uncertainties. We find that the largest decrease in mode amplitude and background power of an AR are caused by the angular distance of the AR from the solar disc centre. After correcting the mode parameters for foreshortening and filling factor, we find that the mode amplitude of flaring and dormant ARs are smaller than in corresponding QRs, and decreases with increasing MAI suggesting a larger mode power suppression in ARs with stronger magnetic fields. The mode widths in ARs are larger than in corresponding QRs and increase with MAI, indicating shorter lifetimes of modes in ARs than in QRs. The largest decrease (increase) in mode amplitude (mode width) of dormant ARs is found in the five minute frequency band. The average mode energy of both the flaring and dormant ARs are smaller than in their corresponding QRs, decreasing with increasing MAI. But the average mode energy decrease rate in flaring ARs are smaller than in dormant ARs. Also, the increase in mode width rate in dormant (flaring) ARs is followed by decrease (increase) in amplitude variation rate. Furthermore, inclusion of mode corrections for MAI shows that mode amplitude and mode energy of flaring ARs increase with FI while mode width shows an opposite trend. The increase (decrease) in mode amplitude (width) is larger in the five minute and higher frequency band. Increase in width variation rate is ..

    Magnetic structure of solar active region NOAA 11158

    Full text link
    Magnetic fields in the solar corona are responsible for a wide range of phenomena. However, any direct measurements of the coronal magnetic fields are very difficult due to lack of suitable spectral lines, weak magnetic fields, and high temperatures. Therefore, one extrapolates photospheric field measurements into the corona. Owing to low coronal plasma β\beta, we can apply a force-free model in lowest order to study the slow evolution of active region (AR) magnetic fields. On applying these models to AR 11158 and compared with coronal plasma tracers, we found that (1) the approximation of potential field to coronal structures over large length scales is a reasonable one, 2) linear force-free (LFF) assumption to AR coronal fields may not be applicable model as it assumes uniform twist over the entire AR, and 3) for modeling fields at sheared, stressed locations where energy release in the form of flares are usually observed, non-linear force free fields (NLFFF) seem to provide a good approximation. The maximum available free-energy profile shows step-wise decrease that is sufficient to power an M-class flare as observed.Comment: To appear in BASI 2013, Bulletin of Astronomical Society of Indi

    Seismic investigation of the solar structure using GONG frequencies

    Get PDF
    Using the recently obtained GONG frequencies, we investigate the properties of the solar interior by constructing solar models with various input physics like opacities, equation of state, nuclear reaction rates etc. The differential asymptotic inversion technique is then used to infer the relative difference in sound speed between the Sun and solar models. Here we apply these results to test equation of state and different formulation for calculating the convective flux.Comment: Latex, 2 pages, 3 figures, To appear in the IAU Symp. # 181: "Sounding solar and stellar interiors", eds. F.X. Schmider & J. Provos

    Variations in pp-Mode Parameters with Changing Onset-Time of a Large Flare

    Full text link
    It is expected that energetic solar flares releasing large amount of energy at the photosphere may be able to excite the acoustic (pp-) modes of oscillations. We have determined the characteristic properties of mode parameters by applying the ring diagram technique to 3-D power spectra obtained for solar active region NOAA 10486 during the long duration energetic X17.2/4B flare of October 28, 2003. Strong evidence of substantial increase in mode amplitude and systematic variations in sub-surface flows, i.e., meridional and zonal components of velocity, kinetic helicity, vorticity, is found from comparison of the pre- to the post-flare phases.Comment: 14 pages, 4 figure
    corecore