18 research outputs found

    Forecasting species distributions : correlation does not equal causation

    Get PDF
    This research was funded by the U.S. Department of the Interior Northeast Climate Adaptation Science Center, which is managed by the U.S. Geological Survey National Climate Adaptation Science Center. Additional funding was provided by T-2- 3R grants for Nongame Species Monitoring and Management through the New Hampshire Fish and Game Department and E-1- 25 grants for Investigations and Population Recovery through the Vermont Fish and Wildlife Department.Aim Identifying the mechanisms influencing species' distributions is critical for accurate climate change forecasts. However, current approaches are limited by correlative models that cannot distinguish between direct and indirect effects. Location New Hampshire and Vermont, USA. Methods Using causal and correlational models and new theory on range limits, we compared current (2014?2019) and future (2080s) distributions of ecologically important mammalian carnivores and competitors along range limits in the northeastern US under two global climate models (GCMs) and a high-emission scenario (RCP8.5) of projected snow and forest biomass change. Results Our hypothesis that causal models of climate-mediated competition would result in different distribution predictions than correlational models, both in the current and future periods, was well-supported by our results; however, these patterns were prominent only for species pairs that exhibited strong interactions. The causal model predicted the current distribution of Canada lynx (Lynx canadensis) more accurately, likely because it incorporated the influence of competitive interactions mediated by snow with the closely related bobcat (Lynx rufus). Both modeling frameworks predicted an overall decline in lynx occurrence in the central high-elevation regions and increased occurrence in the northeastern region in the 2080s due to changes in land use that provided optimal habitat. However, these losses and gains were less substantial in the causal model due to the inclusion of an indirect buffering effect of snow on lynx. Main conclusions Our comparative analysis indicates that a causal framework, steeped in ecological theory, can be used to generate spatially explicit predictions of species distributions. This approach can be used to disentangle correlated predictors that have previously hampered understanding of range limits and species' response to climate change.Publisher PDFPeer reviewe

    Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States

    No full text
    <div><p>The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to determine the timing and magnitude of regional temperature and precipitation changes across the contiguous United States (US) for global warming of 1.5 and 2°C and highlight consensus and uncertainties in model projections and their implications for making decisions. The regional warming rates differ considerably across the contiguous US, but all regions are projected to reach 2°C about 10-20 years before the global mean temperature. Although there is uncertainty in the timing of exactly when the 1.5 and 2°C thresholds will be crossed regionally, over 80% of the models project at least 2°C warming by 2050 for all regions for the high emissions scenario. This threshold-based approach also highlights regional variations in the rate of warming across the US. The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future. The impact of different scenarios on regional precipitation projections is negligible throughout the twenty-first century compared to uncertainties associated with internal variability and model diversity.</p></div

    Signal-to-noise ratio for 5-year mean annual mean global, CONUS, and regional temperatures.

    No full text
    <p>Grey shading indicates the period during which the mean GMAT projections calculated across all 32 models and 2 RCPs are 1.5°C and 2°C above the baseline.</p

    Impact of internal climate variability on the threshold crossing times.

    No full text
    <p>The regional 2°C TCTs are calculated based on regional 5-year mean annual mean temperatures for RCP8.5 for 5 CMIP5 models with initial conditions ensembles. The red symbol indicates TCTs for one realization of the model included in all analyses. The blue symbols show TCTs for different members of the initial conditions ensembles. Gray shaded area indicates the spread in regional TCTs based on all 32 models, each with one realization.</p
    corecore