12,414 research outputs found

    Thermofield-Bosonization on Compact Space

    Full text link
    We develop the construction of fermionic fields in terms of bosonic ones to describe free and interaction models in the circle, using thermofielddynamics. The description in the case of finite temperature is developed for both normal modes and zero modes. The treatment extends the thermofield-bosonization for periodic space

    Canonical Transformations in a Higher-Derivative Field Theory

    Get PDF
    It has been suggested that the chiral symmetry can be implemented only in classical Lagrangians containing higher covariant derivatives of odd order. Contrary to this belief, it is shown that one can construct an exactly soluble two-dimensional higher-derivative fermionic quantum field theory containing only derivatives of even order whose classical Lagrangian exhibits chiral-gauge invariance. The original field solution is expressed in terms of usual Dirac spinors through a canonical transformation, whose generating function allows the determination of the new Hamiltonian. It is emphasized that the original and transformed Hamiltonians are different because the mapping from the old to the new canonical variables depends explicitly on time. The violation of cluster decomposition is discussed and the general Wightman functions satisfying the positive-definiteness condition are obtained.Comment: 12 pages, LaTe

    Higher-Derivative Two-Dimensional Massive Fermion Theories

    Get PDF
    We consider the canonical quantization of a generalized two-dimensional massive fermion theory containing higher odd-order derivatives. The requirements of Lorentz invariance, hermiticity of the Hamiltonian and absence of tachyon excitations suffice to fix the mass term, which contains a derivative coupling. We show that the basic quantum excitations of a higher-derivative theory of order 2N+1 consist of a physical usual massive fermion, quantized with positive metric, plus 2N unphysical massless fermions, quantized with opposite metrics. The positive metric Hilbert subspace, which is isomorphic to the space of states of a massive free fermion theory, is selected by a subsidiary-like condition. Employing the standard bosonization scheme, the equivalent boson theory is derived. The results obtained are used as a guideline to discuss the solution of a theory including a current-current interaction.Comment: 23 pages, Late

    On fermionic tilde conjugation rules and thermal bosonization. Hot and cold thermofields

    Full text link
    A generalization of Ojima tilde conjugation rules is suggested, which reveals the coherent state properties of thermal vacuum state and is useful for the thermofield bosonization. The notion of hot and cold thermofields is introduced to distinguish different thermofield representations giving the correct normal form of thermofield solution for finite temperature Thirring model with correct renormalization and anticommutation properties.Comment: 13 page

    Ising Model on Edge-Dual of Random Networks

    Full text link
    We consider Ising model on edge-dual of uncorrelated random networks with arbitrary degree distribution. These networks have a finite clustering in the thermodynamic limit. High and low temperature expansions of Ising model on the edge-dual of random networks are derived. A detailed comparison of the critical behavior of Ising model on scale free random networks and their edge-dual is presented.Comment: 23 pages, 4 figures, 1 tabl

    Attractive Casimir effect in an infrared modified gluon bag model

    Full text link
    In this work, we are motivated by previous attempts to derive the vacuum contribution to the bag energy in terms of familiar Casimir energy calculations for spherical geometries. A simple infrared modified model is introduced which allows studying the effects of the analytic structure as well as the geometry in a clear manner. In this context, we show that if a class of infrared vanishing effective gluon propagators is considered, then the renormalized vacuum energy for a spherical bag is attractive, as required by the bag model to adjust hadron spectroscopy.Comment: 7 pages. 1 figure. Accepted for publication in Physical Review D. Revised version with improved analysis and presentation, references adde

    Module identification in bipartite and directed networks

    Full text link
    Modularity is one of the most prominent properties of real-world complex networks. Here, we address the issue of module identification in two important classes of networks: bipartite networks and directed unipartite networks. Nodes in bipartite networks are divided into two non-overlapping sets, and the links must have one end node from each set. Directed unipartite networks only have one type of nodes, but links have an origin and an end. We show that directed unipartite networks can be conviniently represented as bipartite networks for module identification purposes. We report a novel approach especially suited for module detection in bipartite networks, and define a set of random networks that enable us to validate the new approach
    • …
    corecore