13,815 research outputs found

    Modularity from Fluctuations in Random Graphs and Complex Networks

    Full text link
    The mechanisms by which modularity emerges in complex networks are not well understood but recent reports have suggested that modularity may arise from evolutionary selection. We show that finding the modularity of a network is analogous to finding the ground-state energy of a spin system. Moreover, we demonstrate that, due to fluctuations, stochastic network models give rise to modular networks. Specifically, we show both numerically and analytically that random graphs and scale-free networks have modularity. We argue that this fact must be taken into consideration to define statistically-significant modularity in complex networks.Comment: 4 page

    A machine learning approach for mapping and accelerating multiple sclerosis research

    Get PDF
    The medical field, as many others, is overwhelmed with the amount of research-related information available, such as journal papers, conference proceedings and clinical trials. The task of parsing through all this information to keep up to date with the most recent research findings on their area of expertise is especially difficult for practitioners who must also focus on their clinical duties. Recommender systems can help make decisions and provide relevant information on specific matters, such as for these clinical practitioners looking into which research to prioritize. In this paper, we describe the early work on a machine learning approach, which through an intelligent reinforcement learning approach, maps and recommends research information (papers and clinical trials) specifically for multiple sclerosis research. We tested and evaluated several different machine learning algorithms and present which one is the most promising in developing a complete and efficient model for recommending relevant multiple sclerosis research.info:eu-repo/semantics/publishedVersio

    Ising Model on Edge-Dual of Random Networks

    Full text link
    We consider Ising model on edge-dual of uncorrelated random networks with arbitrary degree distribution. These networks have a finite clustering in the thermodynamic limit. High and low temperature expansions of Ising model on the edge-dual of random networks are derived. A detailed comparison of the critical behavior of Ising model on scale free random networks and their edge-dual is presented.Comment: 23 pages, 4 figures, 1 tabl
    • …
    corecore