409 research outputs found
Seasonality of microbial genetic functions in the Arctic Ocean revealed by autonomous sampling
The functional diversity of microbes along the seasonal extremes in the Arctic Ocean including the Polar Night are virtually unknown. Here, using PacBio long-read metagenomes derived from automated samplers over an annual cycle, we elucidate functional microbial seasonality in the Fram Strait in the context of a high-resolution amplicon time-series. In the ice-free West Spitsbergen Current, the transition from the phototrophy-dominated spring and summer ecosystem states to the dark winter was evident in bacterial genomes. Proteorhodopsin- and DMSP-utilizing genes peaked in late summer, marking a transition phase. Winter mixing of the water column covaried with microbial taxa encoding ammonia- and urea-metabolizing genes, with probable implications for nitrogen recycling and the following phytoplankton bloom. In the ice-covered East Greenland Current, functional diversity varied with the extent of ice cover and polar water masses. During intermittent low-ice conditions in winter, the metagenomic repertoire resembled that during summer, indicating rapidly (i.e. within weeks) shifting ecosystem states with ice cover. Overall, we provide a baseline to understand ecological and biogeochemical processes in a region severely affected by climate change, with implications for the present and future Arctic Ocean
Microbial Community Response to Simulated Petroleum Seepage in Caspian Sea Sediments
Anaerobic microbial hydrocarbon degradation is a major biogeochemical process at
marine seeps. Here we studied the response of the microbial community to petroleum
seepage simulated for 190 days in a sediment core from the Caspian Sea using
a sediment-oil-flow-through (SOFT) system. Untreated (without simulated petroleum
seepage) and SOFT sediment microbial communities shared 43% bacterial genuslevel
16S rRNA-based operational taxonomic units (OTU0:945) but shared only 23%
archaeal OTU0:945. The community differed significantly between sediment layers.
The detection of fourfold higher deltaproteobacterial cell numbers in SOFT than in
untreated sediment at depths characterized by highest sulfate reduction rates and
strongest decrease of gaseous and mid-chain alkane concentrations indicated a specific
response of hydrocarbon-degrading Deltaproteobacteria. Based on an increase in
specific CARD-FISH cell numbers, we suggest the following groups of sulfate-reducing
bacteria to be likely responsible for the observed decrease in aliphatic and aromatic
hydrocarbon concentration in SOFT sediments: clade SCA1 for propane and butane
degradation, clade LCA2 for mid- to long-chain alkane degradation, clade Cyhx for
cycloalkanes, pentane and hexane degradation, and relatives of Desulfobacula for
toluene degradation. Highest numbers of archaea of the genus Methanosarcina were
found in the methanogenic zone of the SOFT core where we detected preferential
degradation of long-chain hydrocarbons. Sequencing of masD, a marker gene for
alkane degradation encoding (1-methylalkyl)succinate synthase, revealed a low diversity
in SOFT sediment with two abundant species-level MasD OTU0:96
Graphical representation of ribosomal RNA probe accessibility data using ARB software package
BACKGROUND: Taxon specific hybridization probes in combination with a variety of commonly used hybridization formats nowadays are standard tools in microbial identification. A frequently applied technology, fluorescence in situ hybridization (FISH), besides single cell identification, allows the localization and functional studies of the microbial community composition. Careful in silico design and evaluation of potential oligonucleotide probe targets is therefore crucial for performing successful hybridization experiments. RESULTS: The PROBE Design tools of the ARB software package take into consideration several criteria such as number, position and quality of diagnostic sequence differences while designing oligonucleotide probes. Additionally, new visualization tools were developed to enable the user to easily examine further sequence associated criteria such as higher order structure, conservation, G+C content, transition-transversion profiles and in situ target accessibility patterns. The different types of sequence associated information (SAI) can be visualized by user defined background colors within the ARB primary and secondary structure editors as well as in the PROBE Match tool. CONCLUSION: Using this tool, in silico probe design and evaluation can be performed with respect to in situ probe accessibility data. The evaluation of proposed probe targets with respect to higher-order rRNA structure is of importance for successful design and performance of in situ hybridization experiments. The entire ARB software package along with the probe accessibility data is available from the ARB home page
Singleācell and population level viral infection dynamics revealed by phage FISH , a method to visualize intracellular and free viruses
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/99658/1/emi12100.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/99658/2/emi12100-sup-0001-suppl.pd
Recurrent patterns of microdiversity in a temperate coastal marine environment
Ā© The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in The ISME Journal 12 (2018): 237ā252, doi:10.1038/ismej.2017.165.Temperate coastal marine environments are replete with complex biotic and abiotic interactions that are amplified during spring and summer phytoplankton blooms. During these events, heterotrophic bacterioplankton respond to successional releases of dissolved organic matter as algal cells are lysed. Annual seasonal shifts in the community composition of free-living bacterioplankton follow broadly predictable patterns, but whether similar communities respond each year to bloom disturbance events remains unknown owing to a lack of data sets, employing high-frequency sampling over multiple years. We capture the fine-scale microdiversity of these events with weekly sampling using a high-resolution method to discriminate 16S ribosomal RNA gene amplicons that are >99% identical. Furthermore, we used 2 complete years of data to facilitate identification of recurrent sub-networks of co-varying microbes. We demonstrate that despite inter-annual variation in phytoplankton blooms and despite the dynamism of a coastalāoceanic transition zone, patterns of microdiversity are recurrent during both bloom and non-bloom conditions. Sub-networks of co-occurring microbes identified reveal that correlation structures between community members appear quite stable in a seasonally driven response to oligotrophic and eutrophic conditions.PLB is supported by the European Research Council Advanced Investigator grant ABYSS 294757 to Antje Boetius. AF-G is supported by the European Unionās Horizon 2020 research and innovation program (Blue Growth: Unlocking the potential of Seas and Oceans) under grant agreement no. (634486) (project acronym INMARE). This study was funded by the Max Planck Society. Further support by the Department of Energy Joint Genome Institute (CSP COGITO) and DFG (FOR2406) is acknowledged by HT (TE 813/2-1) and RA (Am 73/9-1)
Single cell fluorescence imaging of glycan uptake by intestinal bacteria
Microbes in the intestines of mammals degrade dietary glycans for energy and growth. The pathways required for polysaccharide utilization are functionally diverse; moreover, they are unequally dispersed between bacterial genomes. Hence, assigning metabolic phenotypes to genotypes remains a challenge in microbiome research. Here we demonstrate that glycan uptake in gut bacteria can be visualized with fluorescent glycan conjugates (FGCs) using epifluorescence microscopy. Yeast Ī±-mannan and rhamnogalacturonan-II, two structurally distinct glycans from the cell walls of yeast and plants, respectively, were fluorescently labeled and fed to Bacteroides thetaiotaomicron VPI-5482. Wild-type cells rapidly consumed the FGCs and became fluorescent; whereas, strains that had deleted pathways for glycan degradation and transport were non-fluorescent. Uptake of FGCs, therefore, is direct evidence of genetic function and provides a direct method to assess specific glycan metabolism in intestinal bacteria at the single cell level.</p
Bacterial diversity in the South Adriatic Sea during a strong deep winter convection year
The South Adriatic Sea is the deepest part of the Adriatic Sea and represents a key area for both the Adriatic Sea and the deep eastern Mediterranean. It has a role in dense water formation for the eastern Mediterranean deep circulation cell, and it represents an entry point for water masses originating from the Ionian Sea. The biodiversity and seasonality of bacterial picoplankton before, during, and after deep winter convection in the oligotrophic South Adriatic waters were assessed by combining comparative 16S rRNA sequence analysis and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH). The picoplankton communities reached their maximum abundance in the spring euphotic zone when the maximum value of the chlorophyll a in response to deep winter convection was recorded. The communities were dominated by Bacteria, while Archaea were a minor constituent. A seasonality of bacterial richness and diversity was observed, with minimum values occurring during the winter convection and spring postconvection periods and maximum values occurring under summer stratified conditions. The SAR11 clade was the main constituent of the bacterial communities and reached the maximum abundance in the euphotic zone in spring after the convection episode. Cyanobacteria were the second most abundant group, and their abundance strongly depended on the convection event, when minimal cyanobacterial abundance was observed. In spring and autumn, the euphotic zone was characterized by Bacteroidetes and Gammaproteobacteria. Bacteroidetes clades NS2b, NS4, and NS5 and the gammaproteobacterial SAR86 clade were detected to co-occur with phytoplankton blooms. The SAR324, SAR202, and SAR406 clades were present in the deep layer, exhibiting different seasonal variations in abundance. Overall, our data demonstrate that the abundances of particular bacterial clades and the overall bacterial richness and diversity are greatly impacted by strong winter convection
In situ cell division and mortality rates of SAR11, SAR86, Bacteroidetes, and Aurantivirga during phytoplankton blooms reveal differences in population controls
Net growth of microbial populations, i.e., changes in abundances over time, can be studied using 16S rRNA fluorescence in situ hybridization (FISH). However, this approach does not differentiate between mortality and cell division rates. We used FISH-based image cytometry in combination with dilution culture experiments to study net growth, cell division, and mortality rates of four bacterial taxa over two distinct phytoplankton blooms: the oligotrophs SAR11 and SAR86, the copiotrophic phylum Bacteroidetes, and its genus Aurantivirga. Cell volumes, ribosome content, and frequency of dividing cells (FDC) co-varied over time. Among the three, FDC was the most suitable predictor to calculate the cell division rates for the selected taxa. The FDC-derived cell division rates for SAR86 of up to 0.8 d-1 and Aurantivirga of up to 1.9 d-1 differed, as expected for oligotrophs and copiotrophs. Surprisingly, SAR11 also reached high cell division rates of up to 1.9 d-1, even before the onset of phytoplankton blooms. For all four taxonomic groups, the abundance-derived net growth (-0.6 to 0.5 d-1) was about an order of magnitude lower than the cell division rates. Consequently, mortality rates were comparably high to cell division rates, indicating that about 90% of bacterial production is recycled without apparent time lag within one day. Our study shows that determining taxon-specific cell division rates complements omics-based tools and provides unprecedented clues on individual bacterial growth strategies including bottom-up and top-down controls
Genes for laminarin degradation are dispersed in the genomes of particle-associated Maribacter species
Laminarin is a cytosolic storage polysaccharide of phytoplankton and macroalgae and accounts for over 10% of the worldās annually fixed carbon dioxide. Algal disruption, for example, by viral lysis releases laminarin. The soluble sugar is rapidly utilized by free-living planktonic bacteria, in which sugar transporters and the degrading enzymes are frequently encoded in polysaccharide utilization loci. The annotation of flavobacterial genomes failed to identify canonical laminarin utilization loci in several particle-associated bacteria, in particular in strains of Maribacter. In this study, we report in vivo utilization of laminarin by Maribacter forsetii accompanied by additional cell growth and proliferation. Laminarin utilization coincided with the induction of an extracellular endo-laminarinase, SusC/D outer membrane oligosaccharide transporters, and a periplasmic glycosyl hydrolase family 3 protein. An ABC transport system and sugar kinases were expressed. Endo-laminarinase activity was also observed in Maribacter sp. MAR_2009_72, Maribacter sp. Hel_I_7, and Maribacter dokdonensis MAR_2009_60. Maribacter dokdonensis MAR_2009_71 lacked the large endo-laminarinase gene in the genome and had no endo-laminarinase activity. In all genomes, genes of induced proteins were scattered across the genome rather than clustered in a laminarin utilization locus. These observations revealed that the Maribacter strains investigated in this study participate in laminarin utilization, but in contrast to many free-living bacteria, there is no co-localization of genes encoding the enzymatic machinery for laminarin utilization
- ā¦