27 research outputs found

    Genome-wide analysis of the PreA/PreB (QseB/QseC) regulon of Salmonella enterica serovar Typhimurium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Salmonella </it>PreA/PreB two-component system (TCS) is an ortholog of the QseBC TCS of <it>Escherichia coli</it>. In both <it>Salmonella </it>and <it>E. coli</it>, this system has been shown to affect motility and virulence in response to quorum-sensing and hormonal signals, and to affect the transcription of the <it>Salmonella enterica </it>serovar Typhimurium (<it>S</it>. Typhimurium) <it>pmrAB </it>operon, which encodes an important virulence-associated TCS.</p> <p>Results</p> <p>To determine the PreA/PreB regulon in <it>S</it>. Typhimurium, we performed DNA microarrays comparing the wild type strain and various <it>preA </it>and/or <it>preB </it>mutants in the presence of ectopically expressed <it>preA </it>(<it>qseB</it>). These data confirmed our previous findings of the negative effect of PreB on PreA gene regulation and identified candidate PreA-regulated genes. A proportion of the activated loci were previously identified as PmrA-activated genes (<it>yibD</it>, <it>pmrAB</it>, <it>cptA</it>, etc.) or were genes located in the local region around <it>preA</it>, including the <it>preAB </it>operon. The transcriptional units were defined in this local region by RT-PCR, suggesting three PreA activated operons composed of <it>preA-preB</it>, <it>mdaB-ygiN</it>, and <it>ygiW</it>-STM3175. Several putative virulence-related phenotypes were examined for <it>preAB </it>mutants, resulting in the observation of a host cell invasion and slight virulence defect of a <it>preAB </it>mutant. Contrary to previous reports on this TCS, we were unable to show a PreA/PreB-dependent effect of the quorum-sensing signal AI-2 or of epinephrine on <it>S</it>. Typhimurium with regard to bacterial motility.</p> <p>Conclusion</p> <p>This work further characterizes this unorthadox OmpR/EnvZ class TCS and provides novel candidate regulated genes for further study. This first in-depth study of the PreA/PreB regulatory system phenotypes and regulation suggests significant comparative differences to the reported function of the orthologous QseB/QseC in <it>E. coli</it>.</p

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Bacteriophage and the Innate Immune System: Access and Signaling

    No full text
    Bacteriophage and the bacteria they infect are the dominant members of the gastrointestinal microbiome. While bacteria are known to be central to maintenance of the structure, function, and health of the microbiome, it has only recently been recognized that phage too might serve a critical function. Along these lines, bacteria are not the only cells that are influenced by bacteriophage, and there is growing evidence of bacteriophage effects on epithelial, endothelial, and immune cells. The innate immune system is essential to protecting the Eukaryotic host from invading microorganisms, and bacteriophage have been demonstrated to interact with innate immune cells regularly. Here, we conduct a systematic review of the varying mechanisms allowing bacteriophage to access and interact with cells of the innate immune system and propose the potential importance of these interactions

    Mucin and Agitation Shape Predation of Escherichia coli by Lytic Coliphage

    No full text
    The ability of bacteriophage (phage), abundant within the gastrointestinal microbiome, to regulate bacterial populations within the same micro-environment offers prophylactic and therapeutic opportunities. Bacteria and phage have both been shown to interact intimately with mucin, and these interactions invariably effect the outcomes of phage predation within the intestine. To better understand the influence of the gastrointestinal micro-environment on phage predation, we employed enclosed, in vitro systems to investigate the roles of mucin concentration and agitation as a function of phage type and number on bacterial killing. Using two lytic coliphage, T4 and PhiX174, bacterial viability was quantified following exposure to phages at different multiplicities of infection (MOI) within increasing, physiological levels of mucin (0&ndash;4%) with and without agitation. Comparison of bacterial viability outcomes demonstrated that at low MOI, agitation in combination with higher mucin concentration (&gt;2%) inhibited phage predation by both phages. However, when MOI was increased, PhiX predation was recovered regardless of mucin concentration or agitation. In contrast, only constant agitation of samples containing a high MOI of T4 demonstrated phage predation; briefly agitated samples remained hindered. Our results demonstrate that each phage&ndash;bacteria pairing is uniquely influenced by environmental factors, and these should be considered when determining the potential efficacy of phage predation under homeostatic or therapeutic circumstances

    Exploring Mucin as Adjunct to Phage Therapy

    No full text
    Conventional phage therapy using bacteriophages (phages) for specific targeting of pathogenic bacteria is not always useful as a therapeutic for gastrointestinal (GI) dysfunction. Complex dysbiotic GI disorders such as small intestinal bowel overgrowth (SIBO), ulcerative colitis (UC), or Crohn’s disease (CD) are even more difficult to treat as these conditions have shifts in multiple populations of bacteria within the microbiome. Such community-level structural changes in the gut microbiota may require an alternative to conventional phage therapy such as fecal virome transfer or a phage cocktail capable of targeting multiple bacterial species. Additionally, manipulation of the GI microenvironment may enhance beneficial bacteria–phage interactions during treatment. Mucin, produced along the entire length of the GI tract to protect the underlying mucosa, is a prominent contributor to the GI microenvironment and may facilitate bacteria–phage interactions in multiple ways, potentially serving as an adjunct during phage therapy. In this review, we will describe what is known about the role of mucin within the GI tract and how its facilitation of bacteria–phage interactions should be considered in any effort directed at optimizing effectiveness of a phage therapy for gastrointestinal dysbiosis

    In Vivo Collection of Rare Proteins Using Kinesin-based &quot;Nano-Harvesters&quot; In Vivo Collection of Rare Proteins Using Kinesin-based &quot;Nano-Harvesters&quot;

    No full text
    Abstract In this project, we have developed a novel platform for capturing, transport, and separating target analytes using the work harnessed from biomolecular transport systems. Nanoharvesters were constructed by coorganizing kinesin motor proteins and antibodies on a nanocrystal quantum dot (nQD) scaffold. Attachment of kinesin and antibodies to the nQD was achieved through biotin-streptavidin non-covalent bonds. Assembly of the nanoharvesters was characterized using a modified enzyme-linked immunosorbent assay (ELISA) that confirmed attachment of both proteins. Nanoharvesters selective against tumor necrosis factor-α (TNF-α) and nuclear transcription factor-κB (NF-κB) were capable of detecting target antigens at &lt;100 ng/mL in ELISAs. A motility-based assay was subsequently developed using an antibody-sandwich approach in which the target antigen (TNF-α) formed a sandwich with the red-emitting nanoharvester and green-emitting detection nQD. In this format, successful sandwich formation resulted in a yellow emission associated with surface-bound microtubules. Step-wise analysis of sandwich formation suggested that the motility function of the kinesin motors was not adversely affected by either antigen capture or the subsequent binding of the detection nQDs. TNF-α was detected as low as ~1.5 ng/mL TNF-α, with 5.2% of the nanoharvesters successfully capturing the target analyte and detection nQDs. Overall, these results demonstrate the ability to capture target protein analytes in vitro using the kinesin-based nanoharvesters in nanofluidic environments. This system has direct relevance for lab-on-a-chip applications where pressure-driven or electrokinetic movement of fluids is impractical, and offers potential application for in vivo capture of rare proteins within the cytoplasmic domain of live cells. -3
    corecore