251 research outputs found

    Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest

    Get PDF
    Bacteria belonging to the family Brevibacterieae are ubiquitous Gram positive organisms that are responsible for the feet odour and cheese aroma. Brevibacterium mcbrellneri is a relatively new member belonging to Brevibac- terieae. In the current manuscript we discuss isolation of biologically active metabolites from Brevibacterium mcbrellneri. Two aromatic esters were isolated from Brevibacterium mcbrellneri by “Bioassay guided fractiona- tion strategy” and identified as di-(2-ethylhexyl) phthalate and dibutyl phthalate by chemical characterization using biophysical techniques. The phthalate compounds show broad spectrum antibacterial activity and mosquito larvi-cidal activity. Mosquito larvicidal activity has been attributed to inhibition of acetylcholinesterase enzyme activity. These compounds were found to be cytotoxic in multiple cell lines causing cell cycle arrest in G1 phase

    Motif-All: discovering all phosphorylation motifs

    Get PDF
    Background: Phosphorylation motifs represent common patterns around the phosphorylation site. The discovery of such kinds of motifs reveals the underlying regulation mechanism and facilitates the prediction of unknown phosphorylation event. To date, people have gathered large amounts of phosphorylation data, making it possible to perform substrate-driven motif discovery using data mining techniques. Results: We describe an algorithm called Motif-All that is able to efficiently identify all statistically significant motifs. The proposed method explores a support constraint to reduce search space and avoid generating random artifacts. As the number of phosphorylated peptides are far less than that of unphosphorylated ones, we divide the mining process into two stages: The first step generates candidates from the set of phosphorylated sequences using only support constraint and the second step tests the statistical significance of each candidate using the odds ratio derived from the whole data set. Experimental results on real data show that Motif-All outperforms current algorithms in terms of both effectiveness and efficiency. Conclusions: Motif-All is a useful tool for discovering statistically significant phosphorylation motifs. Source codes and data sets are available at: http://bioinformatics.ust.hk/MotifAll.rar

    Genome-wide analysis to predict protein sequence variations that change phosphorylation sites or their corresponding kinases

    Get PDF
    We define phosphovariants as genetic variations that change phosphorylation sites or their interacting kinases. Considering the essential role of phosphorylation in protein functions, it is highly likely that phosphovariants change protein functions. Therefore, a comparison of phosphovariants between individuals or between species can give clues about phenotypic differences. We categorized phosphovariants into three subtypes and developed a system that predicts them. Our method can be used to screen important polymorphisms and help to identify the mechanisms of genetic diseases

    Mining recent brain proteomic databases for ion channel phosphosite nuggets

    Get PDF
    Voltage-gated ion channels underlie electrical activity of neurons and are dynamically regulated by diverse cell signaling pathways that alter their phosphorylation state. Recent global mass spectrometric–based analyses of the mouse brain phosphoproteome have yielded a treasure trove of new data as to the extent and nature of phosphorylation of numerous ion channel principal or α subunits in mammalian brain. Here we compile and review data on 347 phosphorylation sites (261 unique) on 42 different voltage-gated ion channel α subunits that were identified in these recent studies. Researchers in the ion channel field can now begin to explore the role of these novel in vivo phosphorylation sites in the dynamic regulation of the localization, activity, and expression of brain ion channels through multisite phosphorylation of their principal subunits

    Automatic annotation of experimentally derived, evolutionarily conserved post-translational modifications onto multiple genomes

    Get PDF
    New generation sequencing technologies have resulted in significant increases in the number of complete genomes. Functional characterization of these genomes, such as by high-throughput proteomics, is an important but challenging task due to the difficulty of scaling up existing experimental techniques. By use of comparative genomics techniques, experimental results can be transferred from one genome to another, while at the same time minimizing errors by requiring discovery in multiple genomes. In this study, protein phosphorylation, an essential component of many cellular processes, is studied using data from large-scale proteomics analyses of the phosphoproteome. Phosphorylation sites from Homo sapiens, Mus musculus and Drosophila melanogaster phosphopeptide data sets were mapped onto conserved domains in NCBI’s manually curated portion of Conserved Domain Database (CDD). In this subset, 25 phosphorylation sites are found to be evolutionarily conserved between the three species studied. Transfer of phosphorylation annotation of these conserved sites onto sequences sharing the same conserved domains yield 3253 phosphosite annotations for proteins from coelomata, the taxonomic division that spans H. sapiens, M. musculus and D. melanogaster. The method scales automatically, so as the amount of experimental phosphoproteomics data increases, more conserved phosphorylation sites may be revealed

    Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS

    Get PDF
    AbstractThe temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al. 2014; Ly et al. 2015). Here we show that by using specific intracellular immunolabeling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabeled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, which we term ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase.</jats:p

    A comprehensive manually curated reaction map of RANKL/RANK-signaling pathway

    Get PDF
    Receptor activator of nuclear factor-kappa B ligand (RANKL) is a member of tumor necrosis factor (TNF) superfamily that plays a key role in the regulation of differentiation, activation and survival of osteoclasts and also in tumor cell migration and bone metastasis. Osteoclast activation induced by RANKL regulates hematopoietic stem cell mobilization as part of homeostasis and host defense mechanisms thereby linking regulation of hematopoiesis with bone remodeling. Binding of RANKL to its receptor, Receptor activator of nuclear factor-kappa B (RANK) activates molecules such as NF-kappa B, mitogen activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT) and phosphatidyl 3-kinase (PI3K). Although the molecular and cellular roles of these molecules have been reported previously, a systematic cataloging of the molecular events induced by RANKL/RANK interaction has not been attempted. Here, we present a comprehensive reaction map of the RANKL/RANK-signaling pathway based on an extensive manual curation of the published literature. We hope that the curated RANKL/RANK-signaling pathway model would enable new biomedical discoveries, which can provide novel insights into disease processes and development of novel therapeutic interventions

    Human Protein Reference Database—2009 update

    Get PDF
    Human Protein Reference Database (HPRD—http://www.hprd.org/), initially described in 2003, is a database of curated proteomic information pertaining to human proteins. We have recently added a number of new features in HPRD. These include PhosphoMotif Finder, which allows users to find the presence of over 320 experimentally verified phosphorylation motifs in proteins of interest. Another new feature is a protein distributed annotation system—Human Proteinpedia (http://www.humanproteinpedia.org/)—through which laboratories can submit their data, which is mapped onto protein entries in HPRD. Over 75 laboratories involved in proteomics research have already participated in this effort by submitting data for over 15 000 human proteins. The submitted data includes mass spectrometry and protein microarray-derived data, among other data types. Finally, HPRD is also linked to a compendium of human signaling pathways developed by our group, NetPath (http://www.netpath.org/), which currently contains annotations for several cancer and immune signaling pathways. Since the last update, more than 5500 new protein sequences have been added, making HPRD a comprehensive resource for studying the human proteome
    corecore