4 research outputs found

    Foxp3 transcription factor is proapoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals

    No full text
    Immune tolerance requires regulatory T (Treg) cells to prevent autoimmune disease, with the transcription factor Foxp3 functioning as the critical regulator of Treg cell development and function. We report here that Foxp3 was lethal to developing Treg cells in the thymus because it induced a unique proapoptotic protein signature (Puma++p-Bim++p-JNK++DUSP6−) and repressed expression of prosurvival Bcl-2 molecules. However, Foxp3 lethality was prevented by common gamma chain (γc)-dependent cytokine signals that were present in the thymus in limiting amounts sufficient to support only ∼1 million Treg cells. Consequently, most newly arising Treg cells in the thymus were deprived of this signal and underwent Foxp3-induced death, with Foxp3+CD25− Treg precursor cells being the most susceptible. Thus, we identify Foxp3 as a proapoptotic protein that requires developing Treg cells to compete with one another for limiting amounts of γc-dependent survival signals in the thymus

    'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR

    No full text
    T cell immunity requires the long-term survival of T cells that are capable of recognizing self antigens but are not overtly autoreactive. How this balance is achieved remains incompletely understood. Here we identify a homeostatic mechanism that transcriptionally tailors CD8 coreceptor expression in individual CD8+ T cells to the self-specificity of their clonotypic T cell receptor (TCR). 'Coreceptor tuning' results from interplay between cytokine and TCR signals, such that signals from interleukin 7 and other common gamma-chain cytokines transcriptionally increase CD8 expression and thereby promote TCR engagement of self ligands, whereas TCR signals impair common gamma-chain cytokine signaling and thereby decrease CD8 expression. This dynamic interplay induces individual CD8+ T cells to express CD8 in quantities appropriate for the self-specificity of their TCR, promoting the engagement of self ligands, yet avoiding autoreactivity
    corecore