24,812 research outputs found

    DC magnetic field generation in unmagnetized shear flows

    Get PDF
    The generation of DC magnetic fields in unmagnetized plasmas with velocity shear is predicted for non relativistic and relativistic scenarios either due to thermal effects or due to the onset of the Kelvin-Helmholtz instability (KHI). A kinetic model describes the growth and the saturation of the DC field. The predictions of the theory are confirmed by multidimensional particle-in-cell simulations, demonstrating the formation of long lived magnetic fields (t100sωpi1t \sim 100s \omega_{pi}^{-1}) along the full longitudinal extent of the shear layer, with transverse width on the electron length scale (γ0c/ωpe\sqrt{\gamma_0}c/\omega_{pe}), reaching magnitudes eBDC/mecωpeβ0γ0eB_{\mathrm{DC}}/m_ec\omega_{pe}\sim \beta_0\sqrt{\gamma_0}

    Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets

    Get PDF
    Strong shear flow regions found in astrophysical jets are shown to be important dissipation regions, where the shear flow kinetic energy is converted into electric and magnetic field energy via shear instabilities. The emergence of these self-consistent fields make shear flows significant sites for radiation emission and particle acceleration. We focus on electron-scale instabilities, namely the collisionless, unmagnetized Kelvin-Helmholtz instability (KHI) and a large-scale dc magnetic field generation mechanism on the electron scales. We show that these processes are important candidates to generate magnetic fields in the presence of strong velocity shears, which may naturally originate in energetic matter outburst of active galactic nuclei and gamma-ray bursters. We show that the KHI is robust to density jumps between shearing flows, thus operating in various scenarios with different density contrasts. Multidimensional particle-in-cell (PIC) simulations of the KHI, performed with OSIRIS, reveal the emergence of a strong and large-scale dc magnetic field component, which is not captured by the standard linear fluid theory. This dc component arises from kinetic effects associated with the thermal expansion of electrons of one flow into the other across the shear layer, whilst ions remain unperturbed due to their inertia. The electron expansion forms dc current sheets, which induce a dc magnetic field. Our results indicate that most of the electromagnetic energy developed in the KHI is stored in the dc component, reaching values of equipartition on the order of 10310^{-3} in the electron time-scale, and persists longer than the proton time-scale. Particle scattering/acceleration in the self generated fields of these shear flow instabilities is also analyzed

    Transverse electron-scale instability in relativistic shear flows

    Get PDF
    Electron-scale surface waves are shown to be unstable in the transverse plane of a shear flow in an initially unmagnetized plasma, unlike in the (magneto)hydrodynamics case. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroom-like electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. Macroscopic (c/ωpe\gg c/\omega_{pe}) fields are shown to be generated by these microscopic shear instabilities, which are relevant for particle acceleration, radiation emission and to seed MHD processes at long time-scales

    Aggregation in a mixture of Brownian and ballistic wandering particles

    Full text link
    In this paper, we analyze the scaling properties of a model that has as limiting cases the diffusion-limited aggregation (DLA) and the ballistic aggregation (BA) models. This model allows us to control the radial and angular scaling of the patterns, as well as, their gap distributions. The particles added to the cluster can follow either ballistic trajectories, with probability PbaP_{ba}, or random ones, with probability Prw=1PbaP_{rw}=1-P_{ba}. The patterns were characterized through several quantities, including those related to the radial and angular scaling. The fractal dimension as a function of PbaP_{ba} continuously increases from df1.72d_f\approx 1.72 (DLA dimensionality) for Pba=0P_{ba}=0 to df2d_f\approx 2 (BA dimensionality) for Pba=1P_{ba}=1. However, the lacunarity and the active zone width exhibt a distinct behavior: they are convex functions of PbaP_{ba} with a maximum at Pba1/2P_{ba}\approx1/2. Through the analysis of the angular correlation function, we found that the difference between the radial and angular exponents decreases continuously with increasing PbaP_{ba} and rapidly vanishes for Pba>1/2P_{ba}>1/2, in agreement with recent results concerning the asymptotic scaling of DLA clusters.Comment: 7 pages, 6 figures. accepted for publication on PR

    High In-content InGaN layers synthesized by plasma-assisted molecular-beam epitaxy: growth conditions, strain relaxation and In incorporation kinetics

    Full text link
    We report the interplay between In incorporation and strain relaxation kinetics in high-In-content InxGa1-xN (x = 0.3) layers grown by plasma-assisted molecular-beam epitaxy. For In mole fractions x = 0.13-0.48, best structural and morphological quality is obtained under In excess conditions, at In accumulation limit, and at a growth temperature where InGaN decomposition is active. Under such conditions, in situ and ex situ analysis of the evolution of the crystalline structure with the growth thickness points to an onset of misfit relaxation after the growth of 40 nm, and a gradual relaxation during more than 200 nm which results in an inhomogeneous strain distribution along the growth axis. This process is associated with a compositional pulling effect, i.e. indium incorporation is partially inhibited in presence of compressive strain, resulting in a compositional gradient with increasing In mole fraction towards the surface

    Slow down of a globally neutral relativistic ee+e^-e^+ beam shearing the vacuum

    Get PDF
    The microphysics of relativistic collisionless sheared flows is investigated in a configuration consisting of a globally neutral, relativistic ee+e^-e^+ beam streaming through a hollow plasma/dielectric channel. We show through multidimensional PIC simulations that this scenario excites the Mushroom instability (MI), a transverse shear instability on the electron-scale, when there is no overlap (no contact) between the ee+e^-e^+ beam and the walls of the hollow plasma channel. The onset of the MI leads to the conversion of the beam's kinetic energy into magnetic (and electric) field energy, effectively slowing down a globally neutral body in the absence of contact. The collisionless shear physics explored in this configuration may operate in astrophysical environments, particularly in highly relativistic and supersonic settings where macroscopic shear processes are stable

    Optical doping and damage formation in AIN by Eu implantation

    Get PDF
    AlN films grown on sapphire were implanted with 300 keV Eu ions to fluences from 3×1014 to 1.4×1017 atoms/cm2 in two different geometries: “channeled” along the c-axis and “random” with a 10° angle between the ion beam and the surface normal. A detailed study of implantation damage accumulation is presented. Strong ion channeling effects are observed leading to significantly decreased damage levels for the channeled implantation within the entire fluence range. For random implantation, a buried amorphous layer is formed at the highest fluences. Red Eu-related photoluminescence at room temperature is observed in all samples with highest intensities for low damage samples (low fluence and channeled implantation) after annealing. Implantation damage, once formed, is shown to be stable up to very high temperatures.FCT - POCI/FIS/57550/2004FCT - PTDC/FIS/66262/2006FCT - PTDC/CTM/100756/200

    Spectroscopy of brown dwarf candidates in IC 348 and the determination of its substellar IMF down to planetary masses

    Full text link
    Context. Brown dwarfs represent a sizable fraction of the stellar content of our Galaxy and populate the transition between the stellar and planetary mass regime. There is however no agreement on the processes responsible for their formation. Aims. We have conducted a large survey of the young, nearby cluster IC 348, to uncover its low-mass brown dwarf population and study the cluster properties in the substellar regime. Methods. Deep optical and near-IR images taken with MegaCam and WIRCam at the Canada-France-Hawaii Telescope (CFHT) were used to select photometric candidate members. A spectroscopic follow-up of a large fraction of the candidates was conducted to assess their youth and membership. Results. We confirmed spectroscopically 16 new members of the IC 348 cluster, including 13 brown dwarfs, contributing significantly to the substellar census of the cluster, where only 30 brown dwarfs were previously known. Five of the new members have a L0 spectral type, the latest-type objects found to date in this cluster. At 3 Myr, evolutionary models estimate these brown dwarfs to have a mass of ~13 Jupiter masses. Combining the new members with previous census of the cluster, we constructed the IMF complete down to 13 Jupiter masses. Conclusions. The IMF of IC 348 is well fitted by a log-normal function, and we do not see evidence for variations of the mass function down to planetary masses when compared to other young clusters.Comment: Accepted to A&A (8 November 2012

    Zeeman splittings of the 5D0–7F2 transitions of Eu3+ ions implanted into GaN

    Get PDF
    We report the magnetic field splittings of emission lines assigned to the 5D0–7F2 transitions of Eu3+ centres in GaN. The application of a magnetic field in the c-axis direction (B||c) leads to a splitting of the major lines at 621 nm, 622 nm and 622.8 nm into two components. The Zeeman splitting is linear with magnetic field up to 5 Tesla for each line. In contrast, a magnetic field applied in the growth plane (B┴c) does not influence the photoluminescence spectra. The estimated g-factors vary slightly from sample to sample with mean values of g|| ~2.8, ~1.5 and ~2.0 for the emission lines at 621 nm, 622 nm and 622.8 nm respectively
    corecore