444 research outputs found

    An Approach to Ad hoc Cloud Computing

    Get PDF
    We consider how underused computing resources within an enterprise may be harnessed to improve utilization and create an elastic computing infrastructure. Most current cloud provision involves a data center model, in which clusters of machines are dedicated to running cloud infrastructure software. We propose an additional model, the ad hoc cloud, in which infrastructure software is distributed over resources harvested from machines already in existence within an enterprise. In contrast to the data center cloud model, resource levels are not established a priori, nor are resources dedicated exclusively to the cloud while in use. A participating machine is not dedicated to the cloud, but has some other primary purpose such as running interactive processes for a particular user. We outline the major implementation challenges and one approach to tackling them

    Dataset Discovery in Data Lakes

    Get PDF
    Data analytics stands to benefit from the increasing availability of datasets that are held without their conceptual relationships being explicitly known. When collected, these datasets form a data lake from which, by processes like data wrangling, specific target datasets can be constructed that enable value-adding analytics. Given the potential vastness of such data lakes, the issue arises of how to pull out of the lake those datasets that might contribute to wrangling out a given target. We refer to this as the problem of dataset discovery in data lakes and this paper contributes an effective and efficient solution to it. Our approach uses features of the values in a dataset to construct hash-based indexes that map those features into a uniform distance space. This makes it possible to define similarity distances between features and to take those distances as measurements of relatedness w.r.t. a target table. Given the latter (and exemplar tuples), our approach returns the most related tables in the lake. We provide a detailed description of the approach and report on empirical results for two forms of relatedness (unionability and joinability) comparing them with prior work, where pertinent, and showing significant improvements in all of precision, recall, target coverage, indexing and discovery times

    Efficient Feedback Collection for Pay-as-you-go Source Selection

    Get PDF
    Article No. 1International audienceTechnical developments, such as the web of data and web data extraction, combined with policy developments such as those relating to open government or open science, are leading to the availability of increasing numbers of data sources. Indeed, given these physical sources, it is then also possible to create further virtual sources that integrate, aggregate or summarise the data from the original sources. As a result, there is a plethora of data sources, from which a small subset may be able to provide the information required to support a task. The number and rate of change in the available sources is likely to make manual source selection and curation by experts impractical for many applications, leading to the need to pursue a pay-as-you-go approach, in which crowds or data consumers annotate results based on their correctness or suitability, with the resulting annotations used to inform, e.g., source selection algorithms. However, for pay-as-you-go feedback collection to be cost-effective, it may be necessary to select judiciously the data items on which feedback is to be obtained. This paper describes OLBP (Ordering and Labelling By Precision), a heuristics-based approach to the targeting of data items for feedback to support mapping and source selection tasks, where users express their preferences in terms of the trade-off between precision and recall. The proposed approach is then evaluated on two different scenarios, mapping selection with synthetic data, and source selection with real data produced by web data extraction. The results demonstrate a significant reduction in the amount of feedback required to reach user-provided objectives when using OLBP

    Fairness in Data Wrangling

    Get PDF

    Distributed spatial analysis in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) allow us to instrument the physical world in novel ways, providing detailed insight that has not been possible hitherto. Since WSNs provide an interface to the physical world, each sensor node has a location in physical space, thereby enabling us to associate spatial properties with data. Since WSNs can perform periodic sensing tasks, we can also associate temporal markers with data. In the environmental sciences, in particular, WSNs are on the way to becoming an important tool for the modelling of spatially and temporally extended physical phenomena. However, support for high-level and expressive spatial-analytic tasks that can be executed inside WSNs is still incipient. By spatial analysis we mean the ability to explore relationships between spatially-referenced entities (e.g., a vineyard, or a weather front) and to derive representations grounded on such relationships (e.g., the geometrical extent of that part of a vineyard that is covered by mist as the intersection of the geometries that characterize the vineyard and the weather front, respectively). The motivation for this endeavour stems primarily from applications where important decisions hinge on the detection of an event of interest (e.g., the presence, and spatio-temporal progression, of mist over a cultivated field may trigger a particular action) that can be characterized by an event-defining predicate (e.g., humidity greater than 98 and temperature less than 10). At present, in-network spatial analysis in WSN is not catered for by a comprehensive, expressive, well-founded framework. While there has been work on WSN event boundary detection and, in particular, on detecting topological change of WSN-represented spatial entities, this work has tended to be comparatively narrow in scope and aims. The contributions made in this research are constrained to WSNs where every node is tethered to one location in physical space. The research contributions reported here include (a) the definition of a framework for representing geometries; (b) the detailed characterization of an algebra of spatial operators closely inspired, in its scope and structure, by the Schneider-Guting ROSE algebra (i.e., one that is based on a discrete underlying geometry) over the geometries representable by the framework above; (c) distributed in-network algorithms for the operations in the spatial algebra over the representable geometries, thereby enabling (i) new geometries to be derived from induced and asserted ones, and (ii)topological relationships between geometries to be identified; (d) an algorithmic strategy for the evaluation of complex algebraic expressions that is divided into logically-cohesive components; (e) the development of a task processing system that each node is equipped with, thereby with allowing users to evaluate tasks on nodes; and (f) an empirical performance study of the resulting system.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Theoretical analysis of multimodal four-wave mixing in optical microwires

    Get PDF
    Optical fiber microwires (OFMs) are nonlinear optical waveguides that support several spatial modes. The multimodal generalized nonlinear Schrodinger equation (MM-GNLSE) is deduced taking into account the linear and nonlinear modal coupling. A detailed theoretical description of four-wave mixing (FWM) considering the modal coupling is developed. Both, the intramode and the intermode phase-matching conditions is calculated for an optical microwire in a strong guiding regime. Finally, the FWM dynamics is studied and the amplitude evolution of the pump beams, the signal and the idler are analyzed

    Risco e Malefícios do Uso de Polifarmácia nos Idosos Acima de 60 Anos na Unidade Básica de Saúde (UBS) Central do Município Dona Francisca - RS

    Get PDF
    Uma parcela da população atendida na UBS Central de Dona Francisca – RS, para Renovação de Receita Medica de Uso continuo, consomem diversos medicamentos simultâneos. Tal pratica denomina-se Polifarmácia, mecanismo influenciado fortemente pelo fenômeno da medicalização e auto medicação, gerando muitos desafios para os profissionais na ESF. O uso irracional e discriminados de diversos fármacos traduz no consumo excessivo, a subutilização de outros fármacos essências para controle e estabilização do quadro de doenças agudas e crônicas. O uso de múltiplos produtos da prescrição de medicamentos contraindicados, principalmente nesta população especifica, Idosos, favorecem ao aparecimento dos efeitos adversos e das interações entre uso de diversos fármacos usados simultaneamente. Diversos estudos epidemiológicos randomizados demostram aumento significativo do uso de medicamentos com avanço da idade, com maior prevalência na faixa etária acima dos 60 anos. Este trabalho visa propor intervenção no ajuste das prescrições medicas quando oportuno, retirando os excessos e orientado os riscos a população. A partir coleta de dados da população adscrito atendidos pela UBS Central, com diagnostico situacional da área de abrangência de atuação da Unidade de Saúde, com planejamento das ações, propondo soluções ao problema encontrado, o método de estudo se da através investigação individual por meio dos prontuário eletrônico e na busca ativa de cadastrados da equipe de saúde da família, com produção de um manual informativo, educativo orientado esta parcela da população dos riscos da pratica da poli farmácia e uso auto medicamentação sem consulta profissional da área de saúde. Cabendo a todos os profissionais de saúde em alertar, educar e monitorar os pacientes que possuem prescrições que possam comprometer sua segurança

    Understanding the Shape-Memory Alloys Used in Orthodontics

    Get PDF
    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA

    Force Relaxation Characteristics of Medium Force Orthodontic Latex Elastics: A Pilot Study

    Get PDF
    To evaluate force extension relaxation of different brands and diameters of latex elastics subjected to static tensile testing under an apparatus designed to simulate oral environments, sample sizes of 5 elastics from American Orthodontics (AO), Tp, and Morelli Orthodontics (Mo) of equivalent medium force, (3/16, 1/4, and 5/16 inch size) were tested. The forces were read after 1-, 3-, 6-, 12- and 24-hour periods in Emic testing machine with 30 mm/min cross-head speed and load cell of 20 N. Two-way ANOVA and Bonferroni tests were used to identify statistical significance. There were statistically differences among different manufacturers at all observation intervals (P < 0.0001). The relationships among loads at 24-hour time period were as follows: Morelli>AO>Tp for 3/16, 1/4, and 5/16 elastics. The force decay pattern showed a notable drop-off of forces until 3 hours, a slight increase in some groups from 3–6 hours and a more homogeneous force pattern over 6–24 hours
    corecore