1,008 research outputs found
A Mathematical Model to Optimize the Neoadjuvant Chemotherapy Treatment Sequence for Triple-Negative Locally Advanced Breast Cancer
Background: Triple-negative locally advanced breast cancer is an aggressive tumor type. Currently, the standard sequence treatment is applied, administering anthracyclines first and then a taxane plus platinum. Clinical studies for all possible treatment combinations are not practical or affordable, but mathematical modeling of the active mitotic cell population is possible. Our study aims to show the regions with the tumor’s most substantial cellular population variation by utilizing all possible values of the parameters () that define the annihilatory drug capacity according to the proposed treatment.
Method: A piecewise linear mathematical model was used to analyze the cell population growth by applying four treatments: standard sequences of 21 days (SS21) and 14 days (SS14), administering anthracyclines first, followed by a taxane plus platinum, and inverted sequences of 21 days (IS21) and 14 days (IS14), administering a taxane plus platinum first then anthracyclines.
Results: The simulation showed a higher effect of IS14 over SS14 when the rate of drug resistance was larger in the cell population during DNA synthesis (G1 and S) compared to cells in mitosis (G2 and M). However, if the proportion of resistant cells in both populations was equivalent, then treatments did not differ.
Conclusions: When resistance is considerable, IS14 is more efficient than SS14, reducing the tumor population to a minimum
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.publishedVersio
Quantum gravity phenomenology at the dawn of the multi-messenger era -- A review
The exploration of the universe has recently entered a new era thanks to the
multi-messenger paradigm, characterized by a continuous increase in the
quantity and quality of experimental data that is obtained by the detection of
the various cosmic messengers (photons, neutrinos, cosmic rays and
gravitational waves) from numerous origins. They give us information about
their sources in the universe and the properties of the intergalactic medium.
Moreover, multi-messenger astronomy opens up the possibility to search for
phenomenological signatures of quantum gravity. On the one hand, the most
energetic events allow us to test our physical theories at energy regimes which
are not directly accessible in accelerators; on the other hand, tiny effects in
the propagation of very high energy particles could be amplified by
cosmological distances. After decades of merely theoretical investigations, the
possibility of obtaining phenomenological indications of Planck-scale effects
is a revolutionary step in the quest for a quantum theory of gravity, but it
requires cooperation between different communities of physicists (both
theoretical and experimental). This review is aimed at promoting this
cooperation by giving a state-of-the art account of the interdisciplinary
expertise that is needed in the effective search of quantum gravity footprints
in the production, propagation and detection of cosmic messengers
- …