644 research outputs found

    No evidence for a dark matter disk within 4 kpc from the Galactic plane

    Full text link
    We estimated the dynamical surface mass density (Sigma) at the solar Galactocentric distance between 2 and 4 kpc from the Galactic plane, as inferred from the observed kinematics of the thick disk. We find Sigma(z=2 kpc)=57.6+-5.8 Mo pc^-2, and it shows only a tiny increase in the z-range considered by our investigation. We compared our results with the expectations for the visible mass, adopting the most recent estimates in the literature for contributions of the Galactic stellar disk and interstellar medium, and proposed models of the dark matter distribution. Our results match the expectation for the visible mass alone, never differing from it by more than 0.8 $Mo pc^-2 at any z, and thus we find little evidence for any dark component. We assume that the dark halo could be undetectable with our method, but the dark disk, recently proposed as a natural expectation of the LambdaCDM models, should be detected. Given the good agreement with the visible mass alone, models including a dark disk are less likely, but within errors its existence cannot be excluded. In any case, these results put constraints on its properties: thinner models (scale height lower than 4 kpc) reconcile better with our results and, for any scale height, the lower-density models are preferred. We believe that successfully predicting the stellar thick disk properties and a dark disk in agreement with our observations could be a challenging theoretical task.Comment: Accepted for publication in ApJ Letter

    Central Proper-Motion Kinematics of NGC 6752

    Full text link
    We present proper motions derived from WFPC2 imaging for stars in the core of the peculiar globular cluster NGC 6752. The central velocity dispersion in both components of the proper motion is 12 km/s. We discuss the implications of this result as well as the intrinsic difficulties in making such measurements. We also give an alternative correction for the 34-row problem in the WFPC2 CCDs.Comment: 25 pages, 7 figures, 1 table included. Accepted for publication in A

    Food web stability and weighted connectance:the complexity-stability debate revisited

    Get PDF
    How the complexity of food webs relates to stability has been a subject of many studies. Often, unweighted connectance is used to express complexity. Unweighted connectance is measured as the proportion of realized links in the network. Weighted connectance, on the other hand, takes link weights (fluxes or feeding rates) into account and captures the shape of the flux distribution. Here, we used weighted connectance to revisit the relation between complexity and stability. We used 15 real soil food webs and determined the feeding rates and the interaction strength matrices. We calculated both versions of connectance, and related these structural properties to food web stability. We also determined the skewness of both flux and interaction strength distributions with the Gini coefficient. We found no relation between unweighted connectance and food web stability, but weighted connectance was positively correlated with stability. This finding challenges the notion that complexity may constrain stability, and supports the ‘complexity begets stability’ notion. The positive correlation between weighted connectance and stability implies that the more evenly flux rates were distributed over links, the more stable the webs were. This was confirmed by the Gini coefficients of both fluxes and interaction strengths. However, the most even distributions of this dataset still were strongly skewed towards small fluxes or weak interaction strengths. Thus, incorporating these distribution with many weak links via weighted instead of unweighted food web measures can shed new light on classical theories

    Observations of Binary Stars with the Differential Speckle Survey Instrument. II. Hipparcos Stars Observed in 2010 January and June

    Get PDF
    The results of 497 speckle observations of Hipparcos stars and selected other targets are presented. Of these, 367 were resolved into components and 130 were unresolved. The data were obtained using the Differential Speckle Survey Instrument at the WIYN 3.5 m Telescope. (The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatories.) Since the first paper in this series, the instrument has been upgraded so that it now uses two electron-multiplying CCD cameras. The measurement precision obtained when comparing to ephemeris positions of binaries with very well known orbits is approximately 1-2 mas in separation and better than 0°.6 in position angle. Differential photometry is found to be in very good agreement with Hipparcos measures in cases where the comparison is most relevant. We derive preliminary orbits for two systems
    • …
    corecore