2,877 research outputs found

    Gas bubble dynamics in soft materials

    Full text link
    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic medium. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the elastic medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a Generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to a simple liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the Generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium.Comment: 18 pages, 4 figures, 1 table, (Included also "Supplementary information": 2 pages, 1 table

    Fluctons

    Get PDF
    From the perspective of topological field theory we explore the physics beyond instantons. We propose the fluctons as nonperturbative topological fluctuations of vacuum, from which the self-dual domain of instantons is attained as a particular case. Invoking the Atiyah-Singer index theorem, we determine the dimension of the corresponding flucton moduli space, which gives the number of degrees of freedom of the fluctons. An important consequence of these results is that the topological phases of vacuum in non-Abelian gauge theories are not necessarily associated with self-dual fields, but only with smooth fields. Fluctons in different scenarios are considered, the basic aspects of the quantum mechanical amplitude for fluctons are discussed, and the case of gravity is discussed briefly

    Discovery of coherent millisecond X-ray pulsations in Aql X-1

    Full text link
    We report the discovery of an episode of coherent millisecond X-ray pulsation in the neutron star low-mass X-ray binary Aql X-1. The episode lasts for slightly more than 150 seconds, during which the pulse frequency is consistent with being constant. No X-ray burst or other evidence of thermonuclear burning activity is seen in correspondence with the pulsation, which can thus be identified as occurring in the persistent emission. The pulsation frequency is 550.27 Hz, very close (0.5 Hz higher) to the maximum reported frequency from burst oscillations in this source. Hence we identify this frequency with the neutron star spin frequency. The pulsed fraction is strongly energy dependent, ranging from 10% (16-30 keV). We discuss possible physical interpretations and their consequences for our understanding of the lack of pulsation in most neutron star low-mass X-ray binaries. If interpreted as accretion-powered pulsation, Aql X-1 might play a key role in understanding the differences between pulsating and non-pulsating sources.Comment: 5 pages, 3 figures, accepted by ApJ Letters after minor revisions. Slightly extended discussion. One author added. Uses emulateapj.cl

    An X-ray view of the very faint black hole X-ray transient Swift J1357.2-0933 during its 2011 outburst

    Get PDF
    We report on the X-ray spectral (using XMM-Newton data) and timing behavior (using XMM-Newton and Rossi X-ray Timing Explorer [RXTE] data) of the very faint X-ray transient and black hole system Swift J1357.2-0933 during its 2011 outburst. The XMM-Newton X-ray spectrum of this source can be adequately fitted with a soft thermal component with a temperature of ~0.22 keV (using a disc model) and a hard, non-thermal component with a photon index of ~1.6 when using a simple power-law model. In addition, an edge at ~ 0.73 keV is needed likely due to interstellar absorption. During the first RXTE observation we find a 6 mHz quasi-periodic oscillation (QPO) which is not present during any of the later RXTE observations or during the XMM-Newton observation which was taken 3 days after the first RXTE observation. The nature of this QPO is not clear but it could be related to a similar QPO seen in the black hole system H 1743-322 and to the so-called 1 Hz QPO seen in the dipping neutron-star X-ray binaries (although this later identification is quite speculative). The observed QPO has similar frequencies as the optical dips seen previously in this source during its 2011 outburst but we cannot conclusively determine that they are due to the same underlying physical mechanism. Besides the QPO, we detect strong band-limited noise in the power-density spectra of the source (as calculated from both the RXTE and the XMM-Newton data) with characteristic frequencies and strengths very similar to other black hole X-ray transients when they are at low X-ray luminosities. We discuss the spectral and timing properties of the source in the context of the proposed very high inclination of this source. We conclude that all the phenomena seen from the source cannot, as yet, be straightforwardly explained neither by an edge-on configuration nor by any other inclination configuration of the orbit.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in MNRA

    Adsorption desorption processes on mesoscopic pores conected to microscopic pores of complex geometry using the Ising model

    Full text link
    In this work we report studies of nitrogen adsorption and desorption onto solid surfaces using computer simulations of the three dimensional Ising model, for systems with complex porous structures at the mesoscopic and microscopic levels. A hysteresis cycle between the adsorption and desorption processes appears and we find that its characteristics are dependent on the geometry of the pore and on the strength of the surface fluid interaction. We obtained also an average adsorption isotherm, which represents a combination of differently shaped pores, and shows robust jumps at certain values of the chemical potential as a consequence of the structures of the pores. Lastly, we compare our results with experimental data and also report the filling process of microscopic pores connected with mesopores. It is argued that these predictions are useful for researchers working on the enhanced recovery of oil and for the design of new nanomaterials, among others

    Low-frequency QPO from the 11 Hz accreting pulsar in Terzan 5: not frame dragging

    Full text link
    We report on 6 RXTE observations taken during the 2010 outburst of the 11 Hz accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5. During these observations we find power spectra which resemble those seen in Z-type high-luminosity neutron star low-mass X-ray binaries, with a quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz QPO and broad band noise. Using well known frequency-frequency correlations, we identify the 35-50 Hz QPOs as the horizontal branch oscillations (HBO), which were previously suggested to be due to Lense-Thirring precession. As IGR J17480-2446 spins more than an order of magnitude more slowly than any of the other neutron stars where these QPOs were found, this QPO can not be explained by frame dragging. By extension, this casts doubt on the Lense-Thirring precession model for other low-frequency QPOs in neutron-star and perhaps even black-hole systems.Comment: 6 pages, 5 figures, Accepted for publication in ApJ

    Constraining the properties of neutron star crusts with the transient low-mass X-ray binary Aql X-1

    Get PDF
    Aql X-1 is a prolific transient neutron star low-mass X-ray binary that exhibits an accretion outburst approximately once every year. Whether the thermal X-rays detected in intervening quiescent episodes are the result of cooling of the neutron star or due to continued low-level accretion remains unclear. In this work we use Swift data obtained after the long and bright 2011 and 2013 outbursts, as well as the short and faint 2015 outburst, to investigate the hypothesis that cooling of the accretion-heated neutron star crust dominates the quiescent thermal emission in Aql X-1. We demonstrate that the X-ray light curves and measured neutron star surface temperatures are consistent with the expectations of the crust cooling paradigm. By using a thermal evolution code, we find that ~1.2-3.2 MeV/nucleon of shallow heat release describes the observational data well, depending on the assumed mass-accretion rate and temperature of the stellar core. We find no evidence for varying strengths of this shallow heating after different outbursts, but this could be due to limitations of the data. We argue that monitoring Aql X-1 for up to ~1 year after future outbursts can be a powerful tool to break model degeneracies and solve open questions about the magnitude, depth and origin of shallow heating in neutron star crusts.Comment: 14 pages, 5 figures, 3 tables, accepted to MNRA

    Sectorial Economic Growth and Employment in Mexico, 1996-2001

    Get PDF
    This paper shows the results from a study of the impact of sectorial economic growth on unemployment in Mexico for 1996-2001, by applying a disaggregate approach on data from the National Employment Survey (Encuesta Nacional de Empleo). The paper includes a discussion of the theoretical aspects of the sectorial contributions to growth (emphasizing the case of agriculture), as well as of the relationship between production and employment and the working of labor markets, but also describes the recent evolution of unemployment in Mexico. The core of the paper rests upon the analysis of panel data to estimate the open unemployment rate; it also includes the study of regional urban/rural growth through the analysis of unemployment in different sectors for ten different mexican regions. The results from the estimations at the regional level show that unemployment in Mexico has a statistically significant negative effect on sectorial economic growth. Also, evidence was found suggesting that promoting sectorial-regional (urban/rural) growth is an effective way to reduce unemployment. The paper, which is divided into five sections and draws upon some previous work on Okun’s law, also shows the impact that growth among economic activities within sectors has upon unemployment for the period.Sectorial Growth, Unemployment, Okun’s Law, Panel Data, National Employment Survey
    corecore