2,877 research outputs found
Gas bubble dynamics in soft materials
Epstein and Plesset's seminal work on the rate of gas bubble dissolution and
growth in a simple liquid is generalized to render it applicable to a gas
bubble embedded in a soft elastic medium. Both the underlying diffusion
equation and the expression for the gas bubble pressure were modified to allow
for the non-zero shear modulus of the elastic medium. The extension of the
diffusion equation results in a trivial shift (by an additive constant) in the
value of the diffusion coefficient, and does not change the form of the rate
equations. But the use of a Generalized Young-Laplace equation for the bubble
pressure resulted in significant differences on the dynamics of bubble
dissolution and growth, relative to a simple liquid medium. Depending on
whether the salient parameters (solute concentration, initial bubble radius,
surface tension, and shear modulus) lead to bubble growth or dissolution, the
effect of allowing for a non-zero shear modulus in the Generalized
Young-Laplace equation is to speed up the rate of bubble growth, or to reduce
the rate of bubble dissolution, respectively. The relation to previous work on
visco-elastic materials is discussed, as is the connection of this work to the
problem of Decompression Sickness (specifically, "the bends"). Examples of
tissues to which our expressions can be applied are provided. Also, a new
phenomenon is predicted whereby, for some parameter values, a bubble can be
metastable and persist for long times, or it may grow, when embedded in a
homogeneous under-saturated soft elastic medium.Comment: 18 pages, 4 figures, 1 table, (Included also "Supplementary
information": 2 pages, 1 table
Fluctons
From the perspective of topological field theory we explore the physics
beyond instantons. We propose the fluctons as nonperturbative topological
fluctuations of vacuum, from which the self-dual domain of instantons is
attained as a particular case. Invoking the Atiyah-Singer index theorem, we
determine the dimension of the corresponding flucton moduli space, which gives
the number of degrees of freedom of the fluctons. An important consequence of
these results is that the topological phases of vacuum in non-Abelian gauge
theories are not necessarily associated with self-dual fields, but only with
smooth fields. Fluctons in different scenarios are considered, the basic
aspects of the quantum mechanical amplitude for fluctons are discussed, and the
case of gravity is discussed briefly
Discovery of coherent millisecond X-ray pulsations in Aql X-1
We report the discovery of an episode of coherent millisecond X-ray pulsation
in the neutron star low-mass X-ray binary Aql X-1. The episode lasts for
slightly more than 150 seconds, during which the pulse frequency is consistent
with being constant. No X-ray burst or other evidence of thermonuclear burning
activity is seen in correspondence with the pulsation, which can thus be
identified as occurring in the persistent emission. The pulsation frequency is
550.27 Hz, very close (0.5 Hz higher) to the maximum reported frequency from
burst oscillations in this source. Hence we identify this frequency with the
neutron star spin frequency. The pulsed fraction is strongly energy dependent,
ranging from 10% (16-30 keV). We discuss possible physical
interpretations and their consequences for our understanding of the lack of
pulsation in most neutron star low-mass X-ray binaries. If interpreted as
accretion-powered pulsation, Aql X-1 might play a key role in understanding the
differences between pulsating and non-pulsating sources.Comment: 5 pages, 3 figures, accepted by ApJ Letters after minor revisions.
Slightly extended discussion. One author added. Uses emulateapj.cl
An X-ray view of the very faint black hole X-ray transient Swift J1357.2-0933 during its 2011 outburst
We report on the X-ray spectral (using XMM-Newton data) and timing behavior
(using XMM-Newton and Rossi X-ray Timing Explorer [RXTE] data) of the very
faint X-ray transient and black hole system Swift J1357.2-0933 during its 2011
outburst. The XMM-Newton X-ray spectrum of this source can be adequately fitted
with a soft thermal component with a temperature of ~0.22 keV (using a disc
model) and a hard, non-thermal component with a photon index of ~1.6 when using
a simple power-law model. In addition, an edge at ~ 0.73 keV is needed likely
due to interstellar absorption. During the first RXTE observation we find a 6
mHz quasi-periodic oscillation (QPO) which is not present during any of the
later RXTE observations or during the XMM-Newton observation which was taken 3
days after the first RXTE observation. The nature of this QPO is not clear but
it could be related to a similar QPO seen in the black hole system H 1743-322
and to the so-called 1 Hz QPO seen in the dipping neutron-star X-ray binaries
(although this later identification is quite speculative). The observed QPO has
similar frequencies as the optical dips seen previously in this source during
its 2011 outburst but we cannot conclusively determine that they are due to the
same underlying physical mechanism. Besides the QPO, we detect strong
band-limited noise in the power-density spectra of the source (as calculated
from both the RXTE and the XMM-Newton data) with characteristic frequencies and
strengths very similar to other black hole X-ray transients when they are at
low X-ray luminosities. We discuss the spectral and timing properties of the
source in the context of the proposed very high inclination of this source. We
conclude that all the phenomena seen from the source cannot, as yet, be
straightforwardly explained neither by an edge-on configuration nor by any
other inclination configuration of the orbit.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in MNRA
Adsorption desorption processes on mesoscopic pores conected to microscopic pores of complex geometry using the Ising model
In this work we report studies of nitrogen adsorption and desorption onto
solid surfaces using computer simulations of the three dimensional Ising model,
for systems with complex porous structures at the mesoscopic and microscopic
levels. A hysteresis cycle between the adsorption and desorption processes
appears and we find that its characteristics are dependent on the geometry of
the pore and on the strength of the surface fluid interaction. We obtained also
an average adsorption isotherm, which represents a combination of differently
shaped pores, and shows robust jumps at certain values of the chemical
potential as a consequence of the structures of the pores. Lastly, we compare
our results with experimental data and also report the filling process of
microscopic pores connected with mesopores. It is argued that these predictions
are useful for researchers working on the enhanced recovery of oil and for the
design of new nanomaterials, among others
Low-frequency QPO from the 11 Hz accreting pulsar in Terzan 5: not frame dragging
We report on 6 RXTE observations taken during the 2010 outburst of the 11 Hz
accreting pulsar IGR J17480-2446 located in the globular cluster Terzan 5.
During these observations we find power spectra which resemble those seen in
Z-type high-luminosity neutron star low-mass X-ray binaries, with a
quasi-periodic oscillation (QPO) in the 35-50 Hz range simultaneous with a kHz
QPO and broad band noise. Using well known frequency-frequency correlations, we
identify the 35-50 Hz QPOs as the horizontal branch oscillations (HBO), which
were previously suggested to be due to Lense-Thirring precession. As IGR
J17480-2446 spins more than an order of magnitude more slowly than any of the
other neutron stars where these QPOs were found, this QPO can not be explained
by frame dragging. By extension, this casts doubt on the Lense-Thirring
precession model for other low-frequency QPOs in neutron-star and perhaps even
black-hole systems.Comment: 6 pages, 5 figures, Accepted for publication in ApJ
Constraining the properties of neutron star crusts with the transient low-mass X-ray binary Aql X-1
Aql X-1 is a prolific transient neutron star low-mass X-ray binary that
exhibits an accretion outburst approximately once every year. Whether the
thermal X-rays detected in intervening quiescent episodes are the result of
cooling of the neutron star or due to continued low-level accretion remains
unclear. In this work we use Swift data obtained after the long and bright 2011
and 2013 outbursts, as well as the short and faint 2015 outburst, to
investigate the hypothesis that cooling of the accretion-heated neutron star
crust dominates the quiescent thermal emission in Aql X-1. We demonstrate that
the X-ray light curves and measured neutron star surface temperatures are
consistent with the expectations of the crust cooling paradigm. By using a
thermal evolution code, we find that ~1.2-3.2 MeV/nucleon of shallow heat
release describes the observational data well, depending on the assumed
mass-accretion rate and temperature of the stellar core. We find no evidence
for varying strengths of this shallow heating after different outbursts, but
this could be due to limitations of the data. We argue that monitoring Aql X-1
for up to ~1 year after future outbursts can be a powerful tool to break model
degeneracies and solve open questions about the magnitude, depth and origin of
shallow heating in neutron star crusts.Comment: 14 pages, 5 figures, 3 tables, accepted to MNRA
Sectorial Economic Growth and Employment in Mexico, 1996-2001
This paper shows the results from a study of the impact of sectorial economic growth on unemployment in Mexico for 1996-2001, by applying a disaggregate approach on data from the National Employment Survey (Encuesta Nacional de Empleo). The paper includes a discussion of the theoretical aspects of the sectorial contributions to growth (emphasizing the case of agriculture), as well as of the relationship between production and employment and the working of labor markets, but also describes the recent evolution of unemployment in Mexico. The core of the paper rests upon the analysis of panel data to estimate the open unemployment rate; it also includes the study of regional urban/rural growth through the analysis of unemployment in different sectors for ten different mexican regions. The results from the estimations at the regional level show that unemployment in Mexico has a statistically significant negative effect on sectorial economic growth. Also, evidence was found suggesting that promoting sectorial-regional (urban/rural) growth is an effective way to reduce unemployment. The paper, which is divided into five sections and draws upon some previous work on Okun’s law, also shows the impact that growth among economic activities within sectors has upon unemployment for the period.Sectorial Growth, Unemployment, Okun’s Law, Panel Data, National Employment Survey
- …
