12 research outputs found

    Regulation and inhibition of pro-tumorigenic microenvironments

    Get PDF
    Age is the number one risk factor for the development of cancer. While accumulation of epithelial cell mutations is a driving factor for this risk, the role that the tumor microenvironment plays in this process is now well established. Indeed, seminal work has shown that tumorigenic cells unable to grow in xenografts can form tumors when supportive stromal cells are present. Work by many laboratories has demonstrated that a wide variety of cells including endothelial cells, immune cells, the extracellular matrix and fibroblasts can all assume a pro-tumorigenic phenotype. Like cancer-associated fibroblasts (CAFs), senescent cells promote all stages of tumor development and progression. We and others have demonstrated that senescent fibroblasts have an altered expression profile known as the senescence-associated secretory phenotype (SASP). The SASP is composed of pro-angiogenic, pro-inflammatory, pro-growth and extracellular matrix remodeling proteins. Through the SASP, senescent cells promote all stages of tumorigenesis. Interestingly, senescent fibroblasts accumulate in human tissues with age, making them potential players in increasing cancer incidences. Given the profound impact the SASP has on nearly every step in the tumorigenic process it is important to understand how it is regulated. Furthermore, identification of SASP regulatory pathways will identify targets for anti-cancer therapies aimed at inhibiting the pro-tumorigenic microenvironment. I have investigated the regulation of the SASP on several different levels. My work has uncovered a novel transcriptional regulator of SASP factor expression, c-myb. I have also identified a post-transcriptional regulatory network composed of p38MAPK and the RNA-binding protein AUF1, which regulates SASP mRNA stability and sustains SASP expression after the induction of senescence. Finally, I have demonstrated that p38MAPK is a viable stromal-specific therapeutic target for the inhibition of tumor-promoting microenvironments in general, not just those containing senescent fibroblasts. Indeed, cancer-associated fibroblasts (CAFs), which promote tumor growth through an altered gene expression profile similar to the SASP, are dependent upon p38MAPK activity. Inactivation of p38MAPK using an orally administered small molecule inhibitor results in significant blunting of both senescent fibroblast-driven and CAF-driven epithelial cell growth

    Immune responses to SARS-CoV-2 in vaccinated patients receiving checkpoint blockade immunotherapy for cancer

    Get PDF
    Vaccination against SARS-CoV-2 has been successful in protecting patients with cancer from severe infections, but how immune responses against COVID-19 vaccination interact with those elicited during cancer immunotherapy has not been fully described. Immune checkpoint blockade (ICB) disrupts inhibitory pathways in immune cells to improve function and induce tumor immunity but can often cause serious immune related adverse events (IRAEs). Because COVID-19 vaccination and ICB both boost immune responses, it is imperative to understand if combining these regimens causes synergistic enhancement of the immune system. Specifically, whether ICB impacts anti-vaccine immunity in previously vaccinated patients is important since a large percentage of newly diagnosed cancer patients eligible for immunotherapy will have already been vaccinated against COVID-19. To address this, we investigated the influence of ICB on SARS-CoV-2-spike protein (SP) antibody titers and T cell responses in cancer patients previously vaccinated against COVID-19. Human blood samples were collected from 29 vaccinated patients and 12 unvaccinated control patients at baseline (prior to ICB) and following two rounds of ICB infusion. Anti-SARS-CoV-2-SP IgG titers and T cell responses were quantified. Compared to responses at baseline, there was no significant difference in these immune responses after immunotherapy in vaccinated individuals (P=0.4583, P=0.4571, respectively). We interpret these results as evidence that ICB immunotherapy does not significantly enhance SARS-CoV-2-specific antibody titers or T cell responses. Although our study lacks corresponding IRAE rates, the results provide humoral and cellular immunological data that support recent reports documenting the clinical safety and efficacy of COVID-19 vaccination in patients receiving ICB. Additional longitudinal prospective studies, such as the VOICE study (ClinicalTrials.gov identifier NCT04715438) and CAPTURE study (ClinicalTrials.gov identifier NCT03226886), are warranted and will provide broader safety and immunological data defining the effect of systemic cancer therapies on COVID-19 immunity

    Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis

    Get PDF
    Age is a significant risk factor for the development of cancer. However, the mechanisms that drive age-related increases in cancer remain poorly understood. To determine if senescent stromal cells influence tumorigenesis, we develop a mouse model that mimics the aged skin microenvironment. Using this model, here we find that senescent stromal cells are sufficient to drive localized increases in suppressive myeloid cells that contributed to tumour promotion. Further, we find that the stromal-derived senescence-associated secretory phenotype factor interleukin-6 orchestrates both increases in suppressive myeloid cells and their ability to inhibit anti-tumour T-cell responses. Significantly, in aged, cancer-free individuals, we find similar increases in immune cells that also localize near senescent stromal cells. This work provides evidence that the accumulation of senescent stromal cells is sufficient to establish a tumour-permissive, chronic inflammatory microenvironment that can shelter incipient tumour cells, thus allowing them to proliferate and progress unabated by the immune system

    Hematopoietic age at onset of triple-negative breast cancer dictates disease aggressiveness and progression

    No full text
    Triple-negative breast cancer (TNBC) is considered an early onset subtype of breast cancer that carries with it a poorer prognosis in young rather than older women for reasons that remain poorly understood. Hematopoiesis in the bone marrow becomes altered with age and may therefore affect the composition of tumor-infiltrating hematopoietic cells and subsequent tumor progression. In this study, we investigated how age- and tumor-dependent changes to bone marrow-derived hematopoietic cells impact TNBC progression. Using multiple mouse models of TNBC tumorigenesis and metastasis, we found that a specific population of bone marrow cells (BMC) upregulated CSF-1R and secreted the growth factor granulin to support stromal activation and robust tumor growth in young mice. However, the same cell population in old mice expressed low levels of CSF1R and granulin and failed to promote tumor outgrowth, suggesting that age influences the tumorigenic capacity of BMCs in response to tumor-associated signals. Importantly, BMCs from young mice were sufficient to activate a tumor-supportive microenvironment and induce tumor progression in old mice. These results indicate that hematopoietic age is an important determinant of TNBC aggressiveness and provide rationale for investigating age-stratified therapies designed to prevent the protumorigenic effects of activated BMCs

    Obesity-related T cell dysfunction impairs immunosurveillance and increases cancer risk

    No full text
    Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings

    Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads

    No full text
    Immunotherapies are a promising advance in cancer treatment. However, because only a subset of cancer patients benefits from these treatments it is important to find mechanisms that will broaden the responding patient population. Generally, tumors with high mutational burdens have the potential to express greater numbers of mutant neoantigens. As neoantigens can be targets of protective adaptive immunity, highly mutated tumors are more responsive to immunotherapy. Given that external beam radiation 1) is a standard-of-care cancer therapy, 2) induces expression of mutant proteins and potentially mutant neoantigens in treated cells, and 3) has been shown to synergize clinically with immune checkpoint therapy (ICT), we hypothesized that at least one mechanism of this synergy was the generation of de novo mutant neoantigen targets in irradiated cells. Herein, we use KrasG12D x p53−/− sarcoma cell lines (KP sarcomas) that we and others have shown to be nearly devoid of mutations, are poorly antigenic, are not controlled by ICT, and do not induce a protective antitumor memory response. However, following one in vitro dose of 4- or 9-Gy irradiation, KP sarcoma cells acquire mutational neoantigens and become sensitive to ICT in vivo in a T cell-dependent manner. We further demonstrate that some of the radiation-induced mutations generate cytotoxic CD8+ T cell responses, are protective in a vaccine model, and are sufficient to make the parental KP sarcoma line susceptible to ICT. These results provide a proof of concept that induction of new antigenic targets in irradiated tumor cells represents an additional mechanism explaining the clinical findings of the synergy between radiation and immunotherapy.</jats:p
    corecore