46 research outputs found

    Determining a robust indirect measurement of leaf area index in California vineyards for validating remote sensing-based retrievals

    Get PDF
    Accurate ground-based measurements of leaf area index (LAI) are needed for validation of remote sensing-based retrievals used in models estimating plant water use, stress, carbon assimilation and other land surface processes. Several methods for indirect LAI estimation with the Plant Canopy Analyzer (PCA, LAI-2200C, LI-COR, Lincoln, NE, USA) were evaluated using destructive (direct) leaf area measurements in three split-canopy vineyards and one double-vertical vineyard in California, as part of the Grape Remote sensing and Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). A method with the sensor facing the canopy, and four readings occurring evenly across the interrow space, had a coefficient of determination (R2) of 0.87 and relative root mean square error (RRMSE) of 16%, when compared to direct LAI measurements via destructive sampling. A previously used method, with the sensor facing down-row, showed lower correlation to direct LAI (R2 = 0.75, RRMSE = 33%) and underestimation which was mitigated by removing the outer sensor rings from analysis. A PCA method is recommended for rapid and accurate LAI estimation in split-canopy vineyards, though local calibration may be required. The method was tested within small units of ground surface area, which compliments high-resolution datasets such as those acquired by small unmanned aerial vehicles. The utility of ground-based LAI measurements to validate remote sensing products is discussed.info:eu-repo/semantics/acceptedVersio

    Hypothalamic Pomc expression restricted to GABAergic neurons suppresses Npy overexpression and restores food intake in obese mice

    Get PDF
    Objective: Hypothalamic arcuate proopiomelanocortin (Arc-POMC) neurons are involved in different physiological processes such as the regulation of energy balance, glucose homeostasis, and stress-induced analgesia. Since these neurons heterogeneously express different biological markers and project to many hypothalamic and extrahypothalamic areas, it is proposed that Arc-POMC neurons could be classified into different subpopulations having diverse physiological roles. The aim of the present study was to characterize the contribution of the subpopulation of Arc-POMC neurons cosecreting gamma-aminobutyric acid (GABA) neurotransmitter in the control of energy balance. Methods: Arc-Pomc expression restricted to GABAergic-POMC neurons was achieved by crossing a reversible Pomc-deficient mouse line (arcPomc−) with a tamoxifen-inducible Gad2-CreER transgenic line. Pomc expression was rescued in the compound arcPomc−/−:Gad2-CreER female and male mice by tamoxifen treatment at postnatal days 25 (P25) or 60 (P60), and body weight, daily food intake, fasting glycemia, and fasting-induced hyperphagia were measured. POMC recovery was quantified by immunohistochemistry and semiquantitative RT-PCR. Neuropeptide Y (NPY) and GABAergic neurons were identified by in situ hybridization. Arc-POMC neurons projecting to the dorsomedial hypothalamic nucleus (DMH) were studied by stereotactic intracerebral injection of fluorescent retrobeads into the DMH. Results: Tamoxifen treatment of arcPomc−/−:Gad2-CreER mice at P60 resulted in Pomc expression in ∼23–25% of Arc-POMC neurons and ∼15–23% of Pomc mRNA levels, compared to Gad2-CreER control mice. Pomc rescue in GABAergic-POMC neurons at P60 normalized food intake, glycemia, and fasting-induced hyperphagia, while significantly reducing body weight. Energy balance was also improved in arcPomc−/−:Gad2-CreER mice treated with tamoxifen at P25. Distribution analysis of rescued POMC immunoreactive fibers revealed that the DMH is a major target site of GABAergic-POMC neurons. Further, the expression of the orexigenic neuropeptide Y (NPY) in the DMH was increased in arcPomc−/− obese mice but was completely restored after Pomc rescue in arcPomc−/−:Gad2-CreER mice. Finally, we found that ∼75% of Arc-POMC neurons projecting to the DMH are GABAergic. Conclusions: In the present study, we show that the expression of Pomc in the subpopulation of Arc-GABAergic-POMC neurons is sufficient to maintain normal food intake. In addition, we found that DMH-NPY expression is negatively correlated with Pomc expression in GABAergic-POMC neurons, suggesting that food intake may be regulated by an Arc-GABAergic-POMC → DMH-NPY pathway.Fil: Trotta, Milagros. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Bello, Estefanía Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Alsina, Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Tavella, Maria Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Ferrán, José Luis. Universidad de Murcia; EspañaFil: Rubinstein, Mar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Bumaschny, Viviana Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentin

    Leaf spectral clusters as potential optical leaf functional types within California ecosystems

    Get PDF
    Our ability to measure and map plant function at multiple ecological scales is critical for understanding current and future changes in Earth's ecosystems and the global carbon budget. Conventional plant functional types (cPFTs) based on a few productivity-related traits have been previously used to simplify and represent major differences in global plant functions, but more recent research has directly focused on the use of functional trait information. Still, sampling limitations have constrained efforts to truly understand the variance and covariance of functional traits globally. Reflectance spectra offer a fast, repeatable, simultaneous measurement of a wide variety of leaf functional traits and could be used to optically define leaf functional types. To evaluate this concept, we measured leaf reflectance from a wide range of species in a diverse set of ecosystems across central and northern California, including observations from multiple individuals, sites, and seasons. Using principal components analysis, we analyzed spectral variation in relation to categorical attributes such as species and cPFTs, as well as to a set of functional trait metrics calculated from the spectra. We found the first three principal components (PCs) to be weakly related to categorical attributes and more strongly related to spectrally-derived functional metrics. Each PC was more strongly associated with different portions of the spectrum and contained different functional information. We applied a hybrid clustering algorithm to the PC coordinates of the observations to define potential optical leaf functional types. Twelve spectral clusters were identified, and these did not correspond directly to either single cPFTs or species. However, each cluster had a unique functional metric profile. Clusters represented both inter- and intra-species and cPFT functional differences driven by taxonomy, trait evolution and environmental responses, demonstrating their value as optical leaf functional types and the value of the clustering approach used here for defining optical types from leaf spectra. Our findings support the notion that cPFTs do not adequately capture differences in leaf function. They demonstrate that spectral measurements can be used to improve both the definition of PFTs as well as our knowledge regarding the covariance of functional traits within these classes

    Estimation of Surface Thermal Emissivity in a Vineyard for UAV Microbolometer Thermal Cameras Using NASA HyTES Hyperspectral Thermal, and Landsat and AggieAir Optical Data

    Get PDF
    Microbolometer thermal cameras in UAVs and manned aircraft allow for the acquisition of highresolution temperature data, which, along with optical reflectance, contributes to monitoring and modeling of agricultural and natural environments. Furthermore, these temperature measurements have facilitated the development of advanced models of crop water stress and evapotranspiration in precision agriculture and heat fluxes exchanges in small river streams and corridors. Microbolometer cameras capture thermal information at blackbody or radiometric settings (narrowband emissivity equates to unity). While it is customary that the modeler uses assumed emissivity values (e.g. 0.99– 0.96 for agricultural and environmental settings); some applications (e.g. Vegetation Health Index), and complex models such as energy balance-based models (e.g. evapotranspiration) could benefit from spatial estimates of surface emissivity for true or kinetic temperature mapping. In that regard, this work presents an analysis of the spectral characteristics of a microbolometer camera with regard to emissivity, along with a methodology to infer thermal emissivity spatially based on the spectral characteristics of the microbolometer camera. For this work, the MODIS UCBS Emissivity Library, NASA HyTES hyperspectral emissivity, Landsat, and Utah State University AggieAir UAV surface reflectance products are employed. The methodology is applied to a commercial vineyard agricultural setting located in Lodi, California, where HyTES, Landsat, and AggieAir UAV spatial data were collected in the 2014 growing season. Assessment of the microbolometer spectral response with regards to emissivity and emissivity modeling performance for the area of study are presented and discussed

    Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one- and two-source modeling schemes

    Get PDF
    Thermal and multispectral remote sensing data from low-altitude aircraft can provide high spatial resolution necessary for sub-field ( 10 m) and plant canopy (1 m) scale evapotranspiration (ET) monitoring. In this study, highresolution (sub-meter-scale) thermal infrared and multispectral shortwave data from aircraft are used to map ET over vineyards in central California with the two-source energy balance (TSEB) model and with a simple model having operational immediate capabilities called DATTUTDUT (Deriving Atmosphere Turbulent Transport Useful To Dummies Using Temperature). The latter uses contextual information within the image to scale between radiometric land surface temperature (TR) values representing hydrologic limits of potential ET and a non-evaporative surface. Imagery from 5 days throughout the growing season is used for mapping ET at the sub-field scale. The performance of the two models is evaluated using tower-based measurements of sensible (H) and latent heat (LE) flux or ET. The comparison indicates that TSEB was able to derive reasonable ET estimates under varying conditions, likely due to the physically based treatment of the energy and the surface temperature partitioning between the soil/cover crop inter-row and vine canopy elements. On the other hand, DATTUTDUT performance was somewhat degraded presumably because the simple scaling scheme does not consider differences in the two sources (vine and inter-row) of heat and temperature contributions or the effect of surface roughness on the efficiency of heat exchange. Maps of the evaporative fraction (EFDLE/(H CLE)) from the two models had similar spatial patterns but different magnitudes in some areas within the fields on certain days. Large EF discrepancies between the models were found on 2 of the 5 days (DOY 162 and 219) when there were significant differences with the tower-based ET measurements, particularly using the DATTUTDUT model. These differences in EF between the models translate to significant variations in daily water use estimates for these 2 days for the vineyards. Model sensitivity analysis demonstrated the high degree of sensitivity of the TSEB model to the accuracy of the TR data, while the DATTUTDUT model was insensitive to systematic errors in TR as is the case with contextual-based models. However, it is shown that the study domain and spatial resolution will significantly influence the ET estimation from the DATTUTDUT model. Future work is planned for developing a hybrid approach that leverages the strengths of both modeling schemes and is simple enough to be used operationally with high-resolution imagery

    Estimation of Evapotranspiration and Energy Fluxes Using a Deep-Learning-Based High-Resolution Emissivity Model and the Two-Source Energy Balance Model with sUAS Information

    Get PDF
    Surface temperature is necessary for the estimation of energy fluxes and evapotranspiration from satellites and airborne data sources. For example, the Two-Source Energy Balance (TSEB) model uses thermal information to quantify canopy and soil temperatures as well as their respective energy balance components. While surface (also called kinematic) temperature is desirable for energy balance analysis, obtaining this temperature is not straightforward due to a lack of spatially estimated narrowband (sensor-specific) and broadband emissivities of vegetation and soil, further complicated by spectral characteristics of the UAV thermal camera. This study presents an effort to spatially model narrowband and broadband emissivities for a microbolometer thermal camera at UAV information resolution (~0.15 m) based on Landsat and NASA HyTES information using a deep learning (DL) model. The DL model is calibrated using equivalent optical Landsat / UAV spectral information to spatially estimate narrowband emissivity values of vegetation and soil in the 7–14- nm range at UAV resolution. The resulting DL narrowband emissivity values were then used to estimate broadband emissivity based on a developed narrowband-broadband emissivity relationship using the MODIS UCSB Emissivity Library database. The narrowband and broadband emissivities were incorporated into the TSEB model to determine their impact on the estimation of instantaneous energy balance components against ground measurements. The proposed effort was applied to information collected by the Utah State University AggieAir small Unmanned Aerial Systems (sUAS) Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) over a vineyard located in Lodi, California. A comparison of resulting energy balance component estimates, with and without the inclusion of high-resolution narrowband and broadband emissivities, against eddy covariance (EC) measurements under different scenarios are presented and discussed

    To What Extent Does the Eddy Covariance Footprint Cutoff Influence the Estimation of Surface Energy Fluxes Using Two Source Energy Balance Model and High-Resolution Imagery in Commercial Vineyards?

    Get PDF
    Validation of surface energy fluxes from remote sensing sources is performed using instantaneous field measurements obtained from eddy covariance (EC) instrumentation. An eddy covariance measurement is characterized by a footprint function / weighted area function that describes the mathematical relationship between the spatial distribution of surface flux sources and their corresponding magnitude. The orientation and size of each flux footprint / source area depends on the micro-meteorological conditions at the site as measured by the EC towers, including turbulence fluxes, friction velocity (ustar), and wind speed, all of which influence the dimensions and orientation of the footprint. The total statistical weight of the footprint is equal to unity. However, due to the large size of the source area / footprint, a statistical weight cutoff of less than one is considered, ranging between 0.85 and 0.95, to ensure that the footprint model is located inside the study area. This results in a degree of uncertainty when comparing the modeled fluxes from remote sensing energy models (i.e., TSEB2T) against the EC field measurements. In this research effort, the sensitivity of instantaneous and daily surface energy flux estimates to footprint weight cutoffs are evaluated using energy balance fluxes estimated with multispectral imagery acquired by AggieAir sUAS (small Unmanned Aerial Vehicle) over commercial vineyards near Lodi, California, as part of the ARS-USDA Agricultural Research Service’s Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. The instantaneous fluxes from the eddy covariance tower will be compared against instantaneous fluxes obtained from different TSEB2T aggregated footprint weights (cutoffs). The results indicate that the size, shape, and weight of pixels inside the footprint source area are strongly influenced by the cutoff values. Small cutoff values, such as 0.3 and 0.35, yielded high weights for pixels located within the footprint domain, while large cutoffs, such as 0.9 and 0.95, result in low weights. The results also indicate that the distribution of modelled LE values within the footprint source area are influenced by the cutoff values. A wide variation in LE was observed at high cutoffs, such as 0.90 and 0.95, while a low variation was observed at small cutoff values, such as 0.3. This happens due to the large number of pixel units involved inside the footprint domain when using high cutoff values, whereas a limited number of pixels are obtained at lower cutoff values

    Implications of Soil and Canopy Temperature Uncertainty in the Estimation of Surface Energy Fluxes Using TSEB2T and High-Resolution Imagery in Commercial Vineyards

    Get PDF
    Estimation of surface energy fluxes using thermal remote sensing–based energy balance models (e.g., TSEB2T) involves the use of local micrometeorological input data of air temperature, wind speed, and incoming solar radiation, as well as vegetation cover and accurate land surface temperature (LST). The physically based Two-source Energy Balance with a Dual Temperature (TSEB2T) model separates soil and canopy temperature (Ts and Tc) to estimate surface energy fluxes including Rn, H, LE, and G. The estimation of Ts and Tc components for the TSEB2T model relies on the linear relationship between the composite land surface temperature and a vegetation index, namely NDVI. While canopy and soil temperatures are controlling variables in the TSEB2T model, they are influenced by the NDVI threshold values, where the uncertainties in their estimation can degrade the accuracy of surface energy flux estimation. Therefore, in this research effort, the effect of uncertainty in Ts and Tc estimation on surface energy fluxes will be examined by applying a Monte Carlo simulation on NDVI thresholds used to define canopy and soil temperatures. The spatial information used is available from multispectral imagery acquired by the AggieAir sUAS Program at Utah State University over vineyards near Lodi, California as part of the ARS-USDA Agricultural Research Service’s Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project. The results indicate that LE is slightly sensitive to the uncertainty of NDVIs and NDVIc. The observed relative error of LE corresponding to NDVIs uncertainty was between -1% and 2%, while for NDVIc uncertainty, the relative error was between -2.2% and 1.2%. However, when the combined NDVIs and NDVIc uncertainties were used simultaneously, the domain of the observed relative error corresponding to the absolute values of |ΔLE| was between 0% and 4%

    Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models

    Get PDF
    In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to production of enormous amounts of data and to novel data processing and analysis techniques for monitoring crop conditions. One overlooked data source amid these efforts, however, is incorporation of 3D information derived from multi-spectral imagery and photogrammetry algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 3D UAV information in monitoring and assessment of plant conditions. In this study, different aspects of UAV point cloud information for enhancing remote sensing evapotranspiration (ET) models, particularly the Two-Source Energy Balance Model (TSEB), over a commercial vineyard located in California are presented. Toward this end, an innovative algorithm called Vegetation Structural-Spectral Information eXtraction Algorithm (VSSIXA) has been developed. This algorithm is able to accurately estimate height, volume, surface area, and projected surface area of the plant canopy solely based on point cloud information. In addition to biomass information, it can add multi-spectral UAV information to point clouds and provide spectral-structural canopy properties. The biomass information is used to assess its relationship with in situ Leaf Area Index (LAI), which is a crucial input for ET models. In addition, instead of using nominal field values of plant parameters, spatial information of fractional cover, canopy height, and canopy width are input to the TSEB model. Therefore, the two main objectives for incorporating point cloud information into remote sensing ET models for this study are to (1) evaluate the possible improvement in the estimation of LAI and biomass parameters from point cloud information in order to create robust LAI maps at the model resolution and (2) assess the sensitivity of the TSEB model to using average/nominal values versus spatially-distributed canopy fractional cover, height, and width information derived from point cloud data. The proposed algorithm is tested on imagery from the Utah State University AggieAir sUAS Program as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) collected since 2014 over multiple vineyards located in California. The results indicate a robust relationship between in situ LAI measurements and estimated biomass parameters from the point cloud data, and improvement in the agreement between TSEB model output of ET with tower measurements when employing LAI and spatially-distributed canopy structure parameters derived from the point cloud data

    Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two Source Energy Balance Model and sUAS Imagery in Vineyards

    Get PDF
    Evapotranspiration (ET) is a key variable for hydrology and irrigation water management,with significant importance in drought-stricken regions of the western US. This is particularly true for California, which grows much of the high-value perennial crops in the US. The advent of small Unmanned Aerial System (sUAS) with sensor technology similar to satellite platforms allows for the estimation of high-resolution ET at plant spacing scale for individual fields. However, while multiple efforts have been made to estimate ET from sUAS products, the sensitivity of ET models to different model grid size/resolution in complex canopies, such as vineyards, is still unknown.The variability of row spacing, canopy structure, and distance between fields makes this information necessary because additional complexity processing individual fields. Therefore, processing the entire image at a fixed resolution that is potentially larger than the plant-row separation is more efficient.From a computational perspective, there would be an advantage to running models at much coarser resolutions than the very fine native pixel size from sUAS imagery for operational applications. In this study, the Two-Source Energy Balance with a dual temperature (TSEB2T) model, which uses remotely sensed soil/substrate and canopy temperature from sUAS imagery, was used to estimate ET and identify the impact of spatial domain scale under different vine phenological conditions. The analysis relies upon high-resolution imagery collected during multiple years and times by the Utah State University Aggie Air TM sUAS program over a commercial vineyard located near Lodi, California.This project is part of the USDA-Agricultural Research Service Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX). Original spectral and thermal imagery data from sUAS were at 10 cm and 60 cm per pixel, respectively, and multiple spatial domain scales (3.6, 7.2,14.4, and 30 m) were evaluated and compared against eddy covariance (EC) measurements. Results indicated that the TSEB2T model is only slightly affected in the estimation of the net radiation (Rn) and the soil heat flux (G) at different spatial resolutions, while the sensible and latent heat fluxes (HandLE, respectively) are significantly affected by coarse grid sizes. The results indicated overestimation of H and underestimation of LE values, particularly at Landsat scale (30 m). This refers to the non-linear relationship between the land surface temperature (LST) and the normalized difference vegetation index (NDVI) at coarse model resolution. Another predominant reason for LE reduction in TSEB2T was the decrease in the aerodynamic resistance (Ra), which is a function of the friction velocity (u∗)that varies with mean canopy height and roughness length. While a small increase in grid size can be implemented, this increase should be limited to less than twice the smallest row spacing present in the sUAS imagery. The results also indicated that the mean LE at field scale is reduced by 10% to 20% at coarser resolutions, while the with-in field variability in LE values decreased significantly at the larger grid sizes and ranged between approximately 15% and 45%. This implies that, while the field-scale values of LE are fairly reliable at larger grid sizes, the with-in field variability limits its use for precision agriculture applications
    corecore