2 research outputs found

    An Intelligent Decision Support System for the Detection of Meat Spoilage using Multispectral Images

    Get PDF
    In food industry, quality and safety are considered important issues worldwide that are directly related to health and social progress. The use of vision technology for quality testing of food production has the obvious advantage of being able to continuously monitor a production using non-destructive methods, thus increasing the quality and minimizing cost. The performance of an intelligent decision support system has been evaluated in monitoring the spoilage of minced beef stored either aerobically or under modified atmosphere packaging, at different storage temperatures (0, 5, 10, and 15 °C) utilising multispectral imaging information. This paper utilises a neuro-fuzzy model which incorporates a clustering pre-processing stage for the definition of fuzzy rules, while its final fuzzy rule base is determined by competitive learning. Initially, meat samples are classified according to their storage conditions, while identification models are then utilised for the prediction of the Total Viable Counts of bacteria. The innovation of the proposed approach is further extended to the identification of the temperature used for storage, utilizing only imaging spectral information. Results indicated that spectral information in combination with the proposed modelling scheme could be considered as an alternative methodology for the accurate evaluation of meat spoilage

    Combining Feature Selection Techniques and Neurofuzzy Systems for the Prediction of Total Viable Counts in Beef Fillets Using Multispectral Imaging

    No full text
    In the food industry, quality and safety issues are associated with consumers’ health condition. There is a growing interest in applying various noninvasive sensorial techniques to obtain quickly quality attributes. One of them, hyperspectral/multispectral imaging technique has been extensively used for inspection of various food products. In this paper, a stacking-based ensemble prediction system has been developed for the prediction of total viable counts of microorganisms in beef fillet samples, an essential cause to meat spoilage, utilizing multispectral imaging information. As the selection of important wavelengths from the multispectral imaging system is considered as an essential stage to the prediction scheme, a features fusion approach has been also explored, by combining wavelengths extracted from various feature selection techniques. Ensemble sub-components include two advanced clustering-based neuro-fuzzy network prediction models, one utilizing information from average reflectance values, while the other one from the standard deviation of the pixels’ intensity per wavelength. The performances of neurofuzzy models were compared against established regression algorithms such as multilayer perceptron, support vector machines and partial least squares. Obtained results confirmed the validity of the proposed hypothesis to utilize a combination of feature selection methods with neurofuzzy models in order to assess the microbiological quality of meat products
    corecore