10 research outputs found

    SARS-CoV-2/ACE2 Interaction Suppresses IRAK-M Expression and Promotes Pro-Inflammatory Cytokine Production in Macrophages

    Get PDF
    The major cause of death in SARS-CoV-2 infected patients is due to de-regulation of the innate immune system and development of cytokine storm. SARS-CoV-2 infects multiple cell types in the lung, including macrophages, by engagement of its spike (S) protein on angiotensin converting enzyme 2 (ACE2) receptor. ACE2 receptor initiates signals in macrophages that modulate their activation, including production of cytokines and chemokines. IL-1R-associated kinase (IRAK)-M is a central regulator of inflammatory responses regulating the magnitude of TLR responsiveness. Aim of the work was to investigate whether SARS-CoV-2 S protein-initiated signals modulate pro-inflammatory cytokine production in macrophages. For this purpose, we treated PMA-differentiated THP-1 human macrophages with SARS-CoV-2 S protein and measured the induction of inflammatory mediators including IL6, TNFα, IL8, CXCL5, and MIP1a. The results showed that SARS-CoV-2 S protein induced IL6, MIP1a and TNFα mRNA expression, while it had no effect on IL8 and CXCL5 mRNA levels. We further examined whether SARS-CoV-2 S protein altered the responsiveness of macrophages to TLR signals. Treatment of LPS-activated macrophages with SARS-CoV-2 S protein augmented IL6 and MIP1a mRNA, an effect that was evident at the protein level only for IL6. Similarly, treatment of PAM3csk4 stimulated macrophages with SARS-CoV-2 S protein resulted in increased mRNA of IL6, while TNFα and MIP1a were unaffected. The results were confirmed in primary human peripheral monocytic cells (PBMCs) and isolated CD14+ monocytes. Macrophage responsiveness to TLR ligands is regulated by IRAK-M, an inactive IRAK kinase isoform. Indeed, we found that SARS-CoV-2 S protein suppressed IRAK-M mRNA and protein expression both in THP1 macrophages and primary human PBMCs and CD14+ monocytes. Engagement of SARS-CoV-2 S protein with ACE2 results in internalization of ACE2 and suppression of its activity. Activation of ACE2 has been previously shown to induce anti-inflammatory responses in macrophages. Treatment of macrophages with the ACE2 activator DIZE suppressed the pro-inflammatory action of SARS-CoV-2. Our results demonstrated that SARS-CoV-2/ACE2 interaction rendered macrophages hyper-responsive to TLR signals, suppressed IRAK-M and promoted pro-inflammatory cytokine expression. Thus, activation of ACE2 may be a potential anti-inflammatory therapeutic strategy to eliminate the development of cytokine storm observed in COVID-19 patients

    NM23 proteins: innocent bystanders or local energy boosters for CFTR?

    Get PDF
    NM23 proteins NDPK-A and -B bind to the cystic fibrosis (CF) protein CFTR in different ways from kinases such as PKA, CK2 and AMPK or linkers to cell calcium such as calmodulin and annexins. NDPK-A (not -B) interacts with CFTR through reciprocal AMPK binding/control, whereas NDPK-B (not -A) binds directly to CFTR. NDPK-B can activate G proteins without ligand-receptor coupling, so perhaps NDPK-B's binding influences energy supply local to a nucleotide-binding site (NBD1) needed for CFTR to function. Curiously, CFTR (ABC-C7) is a member of the ATP-binding cassette (ABC) protein family that does not obey 'clan rules'; CFTR channels anions and is not a pump, regulates disparate processes, is itself regulated by multiple means and is so pleiotropic that it acts as a hub that orchestrates calcium signaling through its consorts such as calmodulin/annexins. Furthermore, its multiple partners make CFTR dance to different tunes in different cellular and subcellular locations as it recycles from the plasma membrane to endosomes. CFTR function in airway apical membranes is inhibited by smoking which has been dubbed 'acquired CF'. CFTR alone among family members possesses a trap for other proteins that it unfurls as a 'fish-net' and which bears consensus phosphorylation sites for many protein kinases, with PKA being the most canonical. Recently, the site of CFTR's commonest mutation has been proposed as a knock-in mutant that alters allosteric control of kinase CK2 by log orders of activity towards calmodulin and other substrates after CFTR fragmentation. This link from CK2 to calmodulin that binds the R region invokes molecular paths that control lumen formation, which is incomplete in the tracheas of some CF-affected babies. Thus, we are poised to understand the many roles of NDPK-A and -B in CFTR function and, especially lumen formation, which is defective in the gut and lungs of many CF babies

    Characterisation of the Pathophysiological Role of Chloride Ion Channels in Human Leukocytes Function

    No full text

    The Development and Optimization of Lipid-Based Self-Nanoemulsifying Drug Delivery Systems for the Intravenous Delivery of Propofol

    No full text
    Purpose: Propofol is a relatively short-acting potent anesthetic lipophilic drug used during short surgical procedures. Despite the success of propofol intravenous emulsions, drawbacks to such formulations include inherent emulsion instability, the lack of a safe vehicle to prevent sepsis, and concern regarding hyperlipidemia-related side effects. The aim of the current investigation was to develop a novel, lipid-based self-nanoemulsifying drug delivery system (SNEDDS) for propofol with improved stability and anesthetic activity for human use. Methods: A series of SNEDDS formulations were developed using naturally obtained medium-chain/long-chain mono-, di-, and triglycerides, glyceryl monocaprylate, and water-soluble cosolvents with hydrogenated castor oil constructing ternary phase diagrams for propofol. The developed SNEDDS formulations were characterized using visual observation, particle size analysis, zeta potential, transmission electron microscopy, equilibrium solubility, in vitro dynamic dispersion and stability, and in vivo sleeping disorder studies in rats. The in vivo bioavailability of the SNEDDSs in rats was also studied to compare the representative formulations with the marketed product Diprivan®. Results: Medium-chain triglycerides (M810) with mono-diglycerides (CMCM) as an oil blend and hydrogenated castor oil (KHS15) as a surfactant were selected as key ingredients in ternary phase diagram studies. The nanoemulsifying regions were identified from the studies and a number of SNEDDSs were formulated. Results from the characterization studies demonstrated the formation of efficient nanosized particles (28–45 nm globule size, 0.10–0.20 PDI) in the optimized SNEDDS with a drug loading of 50 mg/g, which is almost 500-fold higher than free propofol. TEM analysis showed the formation of spherical and homogeneous nanoparticles of less than 50 nm. The dissolution rate of the representative SNEDDS was faster than raw propofol and able to maintain 99% propofol in aqueous solution for around 24 h. The optimized liquid SNEDDS formulation was found to be thermodynamically stable. The intravenous administration of the SNEDDS in male Wistar rats induced a sleeping time of 73–88 min. The mean plasma concentrations after the IV administration of propofol nano-formulations PF2-SNEDDS and PF8-SNEDDS were 1348.07 ± 27.31 and 1138.66 ± 44.97 µg/mL, as compared to 891.44 ± 26.05 µg/mL (p = 0.05) observed after the IV administration of raw propofol. Conclusion: Propofol-loaded SNEDDS formulations could be a potential pharmaceutical product with improved stability, bioavailability, and anesthetic activity

    Glutaredoxin proteins from E. coli isoforms were compared in terms of energy frustration

    No full text
    Abstract Glutaredoxin (GRXs) protein plays a vital role inside the cell, including redox control of transcription to the cell's antioxidant defense, apoptosis, and cellular differentiation regulation. In this study, we have investigated the energy landscape and characterized the pattern of local frustration in different forms and states of the GRX protein ofE. coli.Analysis was done on the conformational alterations, significant changes in the frustration pattern, and different GRXs such as GRX-II, GRX-III, GRX-II-GSH, and GRX-III-GSH complex. We have found the practice of frustration, and structure was quite similar in the same isoform having different states of protein; however, a significant difference was observed between different isoforms. Moreover, oxidation of GRX-I introduced an extra α-helix increasing the destabilizing interactions within the protein. The study of frustrated contacts on oxidized and reduced GRX and with bound and unbound Glutathione indicates its potential application in activating and regulating the behavior of GRXs

    Interleukin-22 Polymorphisms in Plasmodium falciparum-Infected Malaria Patients

    No full text
    Background and Objectives. Malaria infection, caused by Plasmodium falciparum, is the most lethal and frequently culminates in severe clinical complications. Interleukin-22 (IL-22) has been implicated in several diseases including malaria. The objective of this study was to investigate the role of IL-22 gene polymorphisms in P. falciparum infection. Material and Methods. Ten single-nucleotide polymorphisms (SNPs), rs976748, rs1179246, rs2046068, rs1182844, rs2227508, rs2227513, rs2227478, rs2227481, rs2227491, and rs2227483, of IL-22 gene were genotyped through PCR-based assays of 250 P. falciparum-infected patients and 200 healthy controls. In addition, a luciferase reporter assay was done to assess the role of the rs2227513 SNP in IL-22 gene promoter activity. Results. We found that the rs2227481 TT genotype (odds ratio 0.254, confidence interval = 0.097-0.663, P=0.002) and the T allele is associated with protection against P. falciparum malaria as well as the rs2227483 AT genotype (odds ratio 0.375, confidence interval = 0.187-0.754, P=0.004). The haplotype A-T-T of rs1179246, rs1182844, and rs976748 was statistically more frequent in the control group (frequency 41%, P=0.034) as well as the haplotype A-G of rs2046068 and rs2227491 (frequency 49.4%, P=0.041). The variant rs2227513 G allele had a statistically higher activity (P<0.0001) with the luciferase reporter assay. Conclusion. The study suggests that IL-22 polymorphisms in rs2227481 and rs2227483 could contribute to protection against P. falciparum malaria. Also, the G allele of rs2227513, located in the promoter region of IL-22 gene, could be essential for higher expression levels of IL-22 cytokine

    Exposure to cadmium telluride quantum dots and gene expression profile of Huh-7 hepatocellular carcinoma cell line

    No full text
    Nanoparticles have shown promising potential for efficient drug delivery, circumventing biological interferences like immunological and renal clearance and mechanical and enzymatic destruction. However, a handful of research papers have questioned the biomedical use of metal-based nanoparticles like cadmium telluride quantum dots (CdTe-QDs) for their cytotoxic, genotoxic, and carcinogenic potential. Herein, we examined the effects of CdTe-QD NPs on gene expression profile of hepatocellular carcinoma (Huh-7) cell line. Huh-7 cells were treated with CdTe-QD NPs (10 μg/ml for 6, 12, and 24 hours, and 25 μg/ml for 6 and 12 hours), and transcriptomic analysis was performed using microarray to evaluate the global gene expression profile. Differential expressed genes (DEGs) were observed for both the doses (10 and 25 μg/ml) of CdTe-QD NPs at different time points. Gene ontology (GO) analysis revealed that genes involved in molecular function of cell cycle, organizational injury and abnormalities, cell death and survival, gene expression, cancer, organismal survival, and cellular development were differentially expressed. Overall, we have demonstrated differential expression of several genes, involved in maintaining cell survival, metabolism, and genome integrity. These findings were confirmed by RT-qPCR study for some canonical pathway genes signifying possible implication in NP toxicity-mediated cell survival and inhibition of cell death.</p

    Exposure to cadmium telluride quantum dots and gene expression profile of Huh-7 hepatocellular carcinoma cell line

    No full text
    Nanoparticles have shown promising potential for efficient drug delivery, circumventing biological interferences like immunological and renal clearance and mechanical and enzymatic destruction. However, a handful of research papers have questioned the biomedical use of metal-based nanoparticles like cadmium telluride quantum dots (CdTe-QDs) for their cytotoxic, genotoxic, and carcinogenic potential. Herein, we examined the effects of CdTe-QD NPs on gene expression profile of hepatocellular carcinoma (Huh-7) cell line. Huh-7 cells were treated with CdTe-QD NPs (10 μg/ml for 6, 12, and 24 hours, and 25 μg/ml for 6 and 12 hours), and transcriptomic analysis was performed using microarray to evaluate the global gene expression profile. Differential expressed genes (DEGs) were observed for both the doses (10 and 25 μg/ml) of CdTe-QD NPs at different time points. Gene ontology (GO) analysis revealed that genes involved in molecular function of cell cycle, organizational injury and abnormalities, cell death and survival, gene expression, cancer, organismal survival, and cellular development were differentially expressed. Overall, we have demonstrated differential expression of several genes, involved in maintaining cell survival, metabolism, and genome integrity. These findings were confirmed by RT-qPCR study for some canonical pathway genes signifying possible implication in NP toxicity-mediated cell survival and inhibition of cell death.</p
    corecore