4,177 research outputs found

    FORECAST OF THE EXPECTED NON-EPIDEMIC MORBIDITY OF ACUTE DISEASES USING RESAMPLING METHODS

    Get PDF
    In epidemiological surveillance it is important that any unusual increase of reported cases be detected as rapidly as possible. Reliable forecasting based on a suitable time series model for an epidemiological indicator is necessary for estimating the expected non-epidemic indicator and to elaborate an alert threshold. Time series analysis of acute diseases often use Gaussian autoregressive integrated moving average models. However, these approaches could be adversely affected by departures from the true underlying distribution. The objective of this paper is to introduce a bootstrap procedure for obtaining prediction intervals in linear models in order to avoid the normality assumption. We present a Monte Carlo study comparing the finite sample properties of the bootstrap prediction intervals with those of alternative methods. Finally, we illustrate the performance of the proposed method with a meningococcal disease incidence series.

    Reliable machine-to-machine multicast services with multi-radio cooperative retransmissions

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11036-015-0575-6The 3GPP is working towards the definition of service requirements and technical solutions to provide support for energy-efficient Machine Type Communications (MTC) in the forthcoming generations of cellular networks. One of the envisioned solutions consists in applying group management policies to clusters of devices in order to reduce control signaling and improve upon energy efficiency, e.g., multicast Over-The-Air (OTA) firmware updates. In this paper, a Multi-Radio Cooperative Retransmission Scheme is proposed to efficiently carry out multicast transmissions in MTC networks, reducing both control signaling and improving energy-efficiency. The proposal can be executed in networks composed by devices equipped with multiple radio interfaces which enable them to connect to both a cellular access network, e.g., LTE, and a short-range MTC area network, e.g., Low-Power Wi-Fi or ZigBee, as foreseen by the MTC architecture defined by ETSI. The main idea is to carry out retransmissions over the M2M area network upon error in the main cellular link. This yields a reduction in both the traffic load over the cellular link and the energy consumption of the devices. Computer-based simulations with ns-3 have been conducted to analyze the performance of the proposed scheme in terms of energy consumption and assess its superior performance compared to non-cooperative retransmission schemes, thus validating its suitability for energy-constrained MTC applications.Peer ReviewedPostprint (author's final draft

    A methodology for population projections: an application to Spain

    Get PDF
    This paper looks at projections for the Spanish population by sex and age for the period of 2005 to 2050. These were carried out using forecasts for birth and mortality rates, and migration. These rates are calculated using two main sources of information. First, a multivariate time series model was applied for the series of variables from the 1970 to 2001 period. Second a model was estimated for life expectancy and for a synthetic fertility index. Both sources of information were combined to obtain the forecasts for the rates. Immigration rates are predicted by assuming three possible scenarios based on the maximum proportion that immigrants will represent in the Spanish population. With these variables a structure of ages and sex for the Spanish population is estimated using a cohort component model

    Discriminant analysis of multivariate time series using wavelets

    Get PDF
    In analyzing ECG data, the main aim is to differentiate between the signal patterns of those of healthy subjects and those of individuals with specific heart conditions. We propose an approach for classifying multivariate ECG signals based on discriminant and wavelet analyzes. For this purpose we use multiple-scale wavelet variances and wavelet correlations to distinguish between the patterns of multivariate ECG signals based on the variability of the individual components of each ECG signal and the relationships between every pair of these components. Using the results of other ECG classification studies in the literature as references, we demonstrate that our approach applied to 12-lead ECG signals from a particular database, displays quite favourable performance. We also demonstrate with real and synthetic ECG data that our approach to classifying multivariate time series out performs other well-known approaches for classifying multivariate time series. In simulation studies using multivariate time series that have patterns that are different from that of the ECG signals, we also demonstrate very favourably performance of this approach when compared to these other approaches.Time series, Wavelet Variances, Wavelet Correlations, Discriminant Analysis

    An Array of Layers in Silicon Sulfides: Chain-like and Ground State Structures

    Full text link
    While much is known about isoelectronic materials related to carbon nanostructures, such as boron nitride layers and nanotubes, rather less is known about equivalent silicon based materials. Following the recent discovery of phosphorene, we herein discuss isoelectronic silicon monosulfide monolayers. We describe a set of anisotropic ground state structures that clearly have a high stability with respect to the near isotropic silicon monosulfide monolayers. The source of the layer anisotropy is related to the presence of Si-S double chains linked by some Si-Si covalent bonds, which lye at the core of the increased stability, together with a remarkable spd hybridization on Si. The involvement of d orbitals brings more variety to silicon-sulfide based nanostructures that are isoelectronic to phosphorene, which could be relevant for future applications, adding extra degrees of freedom.Comment: 16 pages, 6 figure

    Substitutional 4d and 5d Impurities in Graphene

    Full text link
    We describe the structural and electronic properties of graphene doped with substitutional impurities of 4d and 5d transition metals. The binding energy and distances for 4d and 5d metals in graphene show similar trends for the later groups in the periodic table, which is also well-known characteristic of 3d elements. However, along earlier groups the 4d impurities in graphene show very similar binding energies, distances and magnetic moments to 5d ones, which can be related to the influence of the 4d and 5d lanthanide contraction. Surprisingly, within the manganese group, the total magnetic moment of 3μB\mu_{B} for manganese is reduced to 1μB\mu_{B} for technetium and rhenium. We find that with compared with 3d elements, the larger size of the 4d and 5d elements causes a high degree hybridization with the neighbouring carbon atoms, reducing spin splitting in the d levels. It seems that the magnetic adjustment of graphene could be significantly different is 4d or 5d impurities are used instead of 3d impurities.Comment: 16 pages, 4 figure

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    A methodology for population projections: an application to Spain

    Get PDF
    This paper looks at projections for the Spanish population by sex and age for the period of 2005 to 2050. These were carried out using forecasts for birth and mortality rates, and migration. These rates are calculated using two main sources of information. First, a multivariate time series model was applied for the series of variables from the 1970 to 2001 period. Second a model was estimated for life expectancy and for a synthetic fertility index. Both sources of information were combined to obtain the forecasts for the rates. Immigration rates are predicted by assuming three possible scenarios based on the maximum proportion that immigrants will represent in the Spanish population. With these variables a structure of ages and sex for the Spanish population is estimated using a cohort component model.Population projections, Time series, Factorial model, Bootstrap

    On the galloping instability of two-dimensional bodies having elliptical cross sections.

    Get PDF
    Galloping, also known as Den Hartog instability, is the large amplitude, low frequency oscillation of a structure in the direction transverse to the mean wind direction. It normally appears in the case of bodies with small stiffness and structural damping, when they are placed in a flow provided the incident velocity is high enough. Galloping depends on the slope of the lift coefficient versus angle of attack curve, which must be negative. Generally speaking this implies that the body is stalled after boundary layer separation, which, as it is known in non-wedged bodies, is a Reynolds number dependent phenomenon. Wind tunnel experiments have been conducted aiming at establishing the characteristics of the galloping motion of elliptical cross-section bodies when subjected to a uniform flow, the angles of attack ranging from 0° to 90°. The results have been summarized in stability maps, both in the angle of attack versus relative thickness and in the angle of attack versus Reynolds number planes, where galloping instability regions are identified
    corecore